Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 4977-4994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828204

RESUMO

Purpose: Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods: To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the ß-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results: The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion: Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Antígeno CD47 , Exossomos , MicroRNAs , Presenilina-1 , Receptores de Somatostatina , Animais , Exossomos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , MicroRNAs/administração & dosagem , Presenilina-1/genética , Encéfalo/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Somatostatina , Humanos , Modelos Animais de Doenças
2.
Nat Commun ; 13(1): 4174, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854007

RESUMO

Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist.


Assuntos
Adipogenia , Gotículas Lipídicas , Adipogenia/genética , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Camundongos , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
3.
J Oncol ; 2022: 3236058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646111

RESUMO

Background: The role of inherent tumor heterogeneity and an immunosuppressive microenvironment in therapeutic resistance has been determined to be of importance for the better management of glioblastoma multiforme (GBM). Some studies have suggested that combined drugs with divergent mechanisms may be promising in treating recurrent GBM. Methods: Intracranial sustained (Z)-n-butylidenephthalide [(Z)-BP] delivery through Cerebraca Wafers (CWs) to eliminate unresectable brain tumors was combined with the administration of temozolomide (TMZ), pembrolizumab, and cytokine-induced killer (CIK) cells for treating a patient with recurrent glioblastoma. Neurological adverse events and wound healing delay were monitored for estimating tolerance and efficacy. Response Assessment in Neuro-Oncology criteria were applied to evaluate progression-free survival (PFS); further, the molecular characteristics of GBM tissues were analyzed, and the underlying mechanism was investigated using primary culture. Results: Intracerebral (Z)-BP in residual tumors could not only inhibit cancer stem cells but also increase interferon gamma levels in serum, which then led to the regression of GBM and an immune-responsive microenvironment. Targeting receptor tyrosine kinases, including Axl and epidermal growth factor receptor (EGFR), and inhibiting the mechanistic target of rapamycin (mTOR) through (Z)-BP were determined to synergize CIK cells in the presence of pembrolizumab and TMZ in recurrent GBM. Therefore, this well-tolerated regimen could simultaneously block multiple cancer pathways, which allowed extended PFS and improved quality of life for 22 months. Conclusion: Given the several unique functions of (Z)-BP, greater sensitivity of chemotherapy and the synergism of pembrolizumab and CIK cells could have affected the excellent prognosis seen in this patient with recurrent GBM.

4.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205800

RESUMO

In recurrent glioblastoma, Gliadel wafer implantation after surgery has been shown to result in incomplete chemical removal of residual tumor and development of brain edema. Furthermore, temozolomide (TMZ) resistance caused by O6-methylguanine-DNA-methyltransferase (MGMT) activation and programmed cell death-ligand 1 (PD-L1) expression leads to immune-cold lesions that result in poorer prognosis. Cerebraca wafer, a biodegradable polymer containing (Z)-n-butylidenephthalide (BP), is designed to eliminate residual tumor after glioma resection. An open-label, one-arm study with four dose cohorts, involving a traditional 3 + 3 dose escalation clinical trial, of the Cerebraca wafer combined with TMZ on patients with recurrent high-grade glioma, was conducted. Of the 12 patients who receive implantation of Cerebraca wafer, there were no drug-related adverse events (AEs) or serious AEs (SAEs). The median overall survival (OS) of patients receiving low-dose Cerebraca wafer was 12 months in the group with >25% wafer coverage of the resected tumor, which is longer than OS duration in previously published studies (Gliadel wafer, 6.4 months). Patients who received high-dose Cerebraca wafer treatment had not yet died at the data cut-off date; a 100% progression-free survival (PFS) rate at six month was achieved, indicating the median OS of cohort IV was more than 17.4 months. In vitro study of the primary cells collected from the patients revealed that the IC50 of BP against tumor stem cells was four times lower than that of bis-chloroethylnitrosourea (BCNU). A synergistic effect between BP and TMZ was demonstrated by a reduction in MGMT expression. Furthermore, BP inhibited PD-L1 expression, thereby activating T-cell cytotoxicity and increasing interferon-gamma (IFN-γ) secretion. The better therapeutic effect of Cerebraca wafer on recurrent high-grade glioma could occur through re-sensitization of TMZ and reduction of PD-L1.

5.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163312

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is characterized by the over-repetitive CAG codon in the ataxin-3 gene (ATXN3), which encodes the mutant ATXN3 protein. The pathological defects of SCA3 such as the impaired aggresomes, autophagy, and the proteasome have been reported previously. To date, no effective treatment is available for SCA3 disease. This study aimed to study anti-excitotoxic effects of n-butylidenephthalide by chemically insulted Purkinje progenitor cells derived from SCA3 iPSCs. We successfully generated Purkinje progenitor cells (PPs) from SCA3 patient-derived iPSCs. The PPs, expressing both neural and Purkinje progenitor's markers, were acquired after 35 days of differentiation. In comparison with the PPs derived from control iPSCs, SCA3 iPSCs-derived PPs were more sensitive to the excitotoxicity induced by quinolinic acid (QA). The observations of QA-treated SCA3 PPs showing neural degeneration including neurite shrinkage and cell number decrease could be used to quickly and efficiently identify drug candidates. Given that the QA-induced neural cell death of SCA3 PPs was established, the activity of calpain in SCA3 PPs was revealed. Furthermore, the expression of cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptotic pathway, and the accumulation of ATXN3 proteolytic fragments were observed. When SCA3 PPs were treated with n-butylidenephthalide (n-BP), upregulated expression of calpain 2 and concurrent decreased level of calpastatin could be reversed, and the overall calpain activity was accordingly suppressed. Such findings reveal that n-BP could not only inhibit the cleavage of ATXN3 but also protect the QA-induced excitotoxicity from the Purkinje progenitor loss.


Assuntos
Ataxina-3/metabolismo , Anidridos Ftálicos/farmacologia , Células de Purkinje/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Animais , Autofagia/efeitos dos fármacos , Calpaína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Machado-Joseph/metabolismo , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Células de Purkinje/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360896

RESUMO

Despite the improved overall survival rates in most cancers, pancreatic cancer remains one of the deadliest cancers in this decade. The rigid microenvironment, which majorly comprises cancer-associated fibroblasts (CAFs), plays an important role in the obstruction of pancreatic cancer therapy. To overcome this predicament, the signaling of receptor tyrosine kinases (RTKs) and TGF beta receptor (TGFßR) in both pancreatic cancer cell and supporting CAF should be considered as the therapeutic target. The activation of receptors has been reported to be aberrant to cell cycle regulation, and signal transduction pathways, such as growth-factor induced proliferation, and can also influence the apoptotic sensitivity of tumor cells. In this article, the regulation of RTKs/TGFßR between pancreatic ductal adenocarcinoma (PDAC) and CAFs, as well as the RTKs/TGFßR inhibitor-based clinical trials on pancreatic cancer are reviewed.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
7.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199295

RESUMO

Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce neuronal death, leading to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focused on depleting the abnormal aggregates, which led to the discovery of small molecule n-butylidenephthalide (n-BP). n-BP-promoted autophagy protected the loss of Purkinje cell in the cerebellum that regulates the network associated with motor functions. We report that the n-BP treatment may be effective in treating SCA3 disease. n-BP treatment led to the depletion of mutant ATXN3 with the expanded polyQ chain and the toxic fragments resulting in increased metabolic activity and alleviated atrophy of SCA3 murine cerebellum. Furthermore, n-BP treated animal and HEK-293GFP-ATXN3-84Q cell models could consistently show the depletion of aggregates through mTOR inhibition. With its unique mechanism, the two autophagic inhibitors Bafilomycin A1 and wortmannin could halt the n-BP-induced elimination of aggregates. Collectively, n-BP shows promising results for the treatment of SCA3.


Assuntos
Autofagia , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/patologia , Anidridos Ftálicos/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Adenilato Quinase/metabolismo , Animais , Ataxina-3/genética , Autofagia/efeitos dos fármacos , Cerebelo/patologia , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doença de Machado-Joseph/fisiopatologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Mutação/genética , Anidridos Ftálicos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Cell Transplant ; 27(9): 1301-1312, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30033758

RESUMO

Induced pluripotent stem cells (iPSCs), which are generated through reprogramming adult somatic cells by expressing specific transcription factors, can differentiate into derivatives of the three embryonic germ layers and accelerate rapid advances in stem cell research. Neurological diseases such as amyotrophic lateral sclerosis (ALS) have benefited enormously from iPSC technology. This approach can be particularly important for creating iPSCs from patients with familial or sporadic forms of ALS. Motor neurons differentiated from the ALS-patient-derived iPSC can help to determine the relationship between cellular phenotype and genotype. Patient-derived iPSCs facilitate the development of new drugs and/or drug screening for ALS treatment and allow the exploration of the possible mechanism of ALS disease. In this article, we reviewed ALS-patient-specific iPSCs with various genetic mutations, progress in drug development for ALS disease, functional assays showing the differentiation of iPSCs into mature motor neurons, and promising biomarkers in ALS patients for the evaluation of drug candidates.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Esclerose Lateral Amiotrófica/genética , Animais , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
9.
FASEB J ; 31(1): 47-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663861

RESUMO

Membrane fusions that occur during vesicle transport, virus infection, and tissue development, involve receptors that mediate membrane contact and initiate fusion and effectors that execute membrane reorganization and fusion pore formation. Some of these fusogenic receptors/effectors are preferentially recruited to lipid raft membrane microdomains. Therefore, major constituents of lipid rafts, such as stomatin, may be involved in the regulation of cell-cell fusion. Stomatin produced in cells can be released to the extracellular environment, either through protein refolding to pass across lipid bilayer or through exosome trafficking. We report that cells expressing more stomatin or exposed to exogenous stomatin are more prone to undergoing cell fusion. During osteoclastogenesis, depletion of stomatin inhibited cell fusion but had little effect on tartrate-resistant acid phosphatase production. Moreover, in stomatin transgenic mice, increased cell fusion leading to enhanced bone resorption and subsequent osteoporosis were observed. With its unique molecular topology, stomatin forms molecular assembly within lipid rafts or on the appositional plasma membranes, and promotes membrane fusion by modulating fusogenic protein engagement.-Lee, J.-H., Hsieh, C.-F., Liu, H.-W., Chen, C.-Y., Wu, S.-C., Chen, T.-W., Hsu, C.-S., Liao, Y.-H., Yang, C.-Y., Shyu, J.-F., Fischer, W. B., Lin, C.-H. Lipid raft-associated stomatin enhances cell fusion.


Assuntos
Fusão Celular , Regulação da Expressão Gênica/fisiologia , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Osteoclastos/fisiologia , Osteoporose
10.
Cell Biol Int ; 40(8): 926-33, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27306251

RESUMO

Placental trophoblast differentiation involves the continuous fusion of mononuclear cytotrophoblasts. However, except for syncytin, little is known about the detailed mechanisms underlying trophoblast fusion. A previous study indicated that lipid rafts play an important role in HTLV-1 syncytium formation. To identify proteins that may be involved in placental trophoblast differentiation, we examined stomatin, an important lipid-raft protein that localizes to detergent-resistant membrane domains. The syncytium and human chorionic gonadotropin (ß-hCG; a marker of placental trophoblast differentiation) were visualized by immunofluorescence staining. We found that overexpression of stomatin in the nonfusogenic JEG-3 cell line caused syncytium formation and increased the fusion index of cells. Treating these cells with N(6) ,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate further increased cell fusion by stomatin. ß-hCG was found in a few JEG-3 cells overexpressing stomatin at 48 h, and its levels increased dramatically at 72 h along with the formation of the multinuclear syncytium. RNA interference was used to decrease stomatin expression in BeWo cells, a fusogenic human choriocarcinoma cell line. After knockdown for 72 h, stomatin levels decreased by almost 95%. The fusion indexes of control and stomatin-knockdown cells at 72 h were 9.4 and 6.5%, respectively. Our data indicated that stomatin could trigger syncytium formation and upregulate ß-hCG for cell fusion in nonfusogenic JEG-3 cells. Downregulation of stomatin slightly inhibited the fusion index of fusogenic BeWo cells. Thus, these data suggested that stomatin plays an important role in trophoblast differentiation.


Assuntos
Células Gigantes/metabolismo , Proteínas de Membrana/biossíntese , Placenta/citologia , Bucladesina/farmacologia , Diferenciação Celular/fisiologia , Fusão Celular , Linhagem Celular Tumoral , Coriocarcinoma/metabolismo , Coriocarcinoma/patologia , Gonadotropina Coriônica , Feminino , Produtos do Gene env/metabolismo , Células Gigantes/citologia , Células Gigantes/efeitos dos fármacos , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Proteínas da Gravidez/metabolismo , Interferência de RNA , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...