Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 23: 100876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089433

RESUMO

A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.

2.
Adv Healthc Mater ; 12(28): e2301504, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37421244

RESUMO

Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.


Assuntos
Terapia Trombolítica , Trombose , Camundongos , Animais , Medicina de Precisão , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico , Fenômenos Magnéticos
3.
Mater Sci Eng C Mater Biol Appl ; 131: 112488, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857274

RESUMO

The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.


Assuntos
Gases em Plasma , Polímeros , Regeneração , Ciência Translacional Biomédica , Cicatrização
4.
Int J Biol Macromol ; 192: 506-515, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599990

RESUMO

Patients with irregular, huge burn wounds require time-consuming healing. The skin has an epithelial barrier mechanism. Hence, the penetration and retention of therapeutics across the skin to deep lesion is generally quite difficult and these usually constrain the delivery/therapeutic efficacies for wound healing. Effective burn wound healing also necessitates proper circulation. Conventional polymeric dressing usually exhibits weak mechanical behaviors, obstructing their load-bearing applications. Cold atmospheric plasma (CAP) was used as an efficient, environmentally friendly, and biocompatible process to crosslink methylcellulose (MC) designed for topical administration such as therapeutic substances of platelets (SP) and polyethyleneimine-polypyrrole nanoparticle (PEI-PPy NP)-laden MC hydrogel carriers, and wound dressings. The roles of framework parameters for CAP-treated SP-PEI-PPy NP-MC polymeric complex system; chemical, physical, and photothermal effects; morphological, spectroscopical, mechanical, rheological, and surface properties; in vitro drug release; and hydrophobicity are discussed. Furthermore, CAP-treated SP-PEI-PPy NP-MC polymeric complex possessed augmented mechanical properties, biocompatibility, sustainable drug release, drug-retention effects, and near-infrared (NIR)-induced hyperthermia effects that drove heat-shock protein (HSP) expression with drug permeation to deep lesions. This work sheds light on the CAP crosslinking polymeric technology and the efficacy of combining sustained drug release with photothermal therapy in burn wound bioengineering carrier designs.


Assuntos
Plaquetas/efeitos dos fármacos , Queimaduras/terapia , Metilcelulose/química , Metilcelulose/efeitos da radiação , Gases em Plasma/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Fenômenos Químicos , Humanos , Camundongos , Ratos , Análise Espectral
5.
Materials (Basel) ; 14(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063425

RESUMO

Diamond-incorporated copper metal matrix layers were fabricated on brass substrates by using electrodeposition technology in this study. To improve the adhesion of the composite coatings on the brass substrate, a plated copper was applied as the interlayer between the multilayers and the substrate. The surface morphologies of the interlayer and the diamond-incorporated copper composite layers were studied by scanning electron microscopy. The effect of the copper interlayer on the incorporation and the distribution of the diamond content in the coatings was analyzed by surface roughness, electrochemical impedance spectroscopy, and cyclic voltammetry. The diamond content of the composite coating was measured by energy-dispersive X-ray. The film thickness was evaluated by the cross-sectional technique of focused ion beam microscopy. The element, composition, and crystallization direction of diamond with Cu matrix was measured by X-ray diffraction and transmission electron microscope. The adhesion of the multilayers was studied by scratch tests. The experiment results indicated that the diamond content and distribution of the coating were higher and more uniform with the Cu interlayer than that without one. The plated copper interlayer reduced the electrical double-layer impedance and enhanced the adsorption of diamond particles by the surrounding Cu ions, which promoted the diamond content in the composite coatings. The roughened surface caused by the plated Cu interlayer also improved the substrate's mechanical interlock with the composite coating, which contributed to the strong adhesion between them.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32695763

RESUMO

Cold atmospheric plasma jet (CAPJ) or non-thermal plasma jet has been employed in various biomedical applications based on their functions in bactericidal activity and wound healing. However, the effect of CAPJ generated by a particular composition of gases on wound closure and the underlying mechanisms that regulate wound healing signals remain elusive. In the present study, we investigated the impact of helium (He)- or a gas mixture of He and argon (He/Ar)-generated CAPJ on cell proliferation, which is a pivotal step during the wound healing process. With careful treatment duration control, He/Ar-CAPJ effectively induced keratinocyte proliferation and migration mediated through the activation of epithelial-to-mesenchymal transition (EMT) and cell cycle progression, which was evidenced by a decrease in E-cadherin levels and increases in N-cadherin, cyclin D1, Ki-67, Cdk2, and p-ERK levels. Rat wound healing studies showed that He/Ar-CAPJ treatment facilitated granulation tissue formation and mitigated inflammation in cutaneous tissue, resulting in accelerated wound closure. These findings highlight the possibility that He/Ar-CAPJ can be developed as a therapeutic agent for enhancing wound healing.

7.
J Clin Med ; 8(11)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717600

RESUMO

Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ treatment time, were applied to examine the antimicrobial activity against Escherichia coli (E. coli). CAPJ treatment time was found to be the most influential parameter in its antimicrobial ability by evaluation of signal to noise ratios and analysis of variance. 100% bactericidal activity was achieved under the optimal bactericidal activity parameters including the application voltage of 8.5 kV, CAPJ-sample distance of 10 mm, Ar gas flow rate of 500 sccm, and CAPJ treatment time of 300 s, which confirms the efficacy of the Taguchi method in this design. In terms of the mechanism of CAPJ's antimicrobial ability, the intensity of hydroxyl radical produced by CAPJ positively correlated to its antimicrobial efficiency. The CAPJ antimicrobial efficiency was further evaluated by both DNA double-strand breaks analysis and scanning electron microscopy examination of CAPJ treated bacteria. CAPJ destroyed the cell wall of E. coli and further damaged its DNA structure, thus leading to successful killing of bacteria. This study suggests that optimal conditions of CPAJ can provide effective antimicrobial activity and may be grounds for a novel approach for eradicating bacterial infections.

8.
Micromachines (Basel) ; 10(11)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684093

RESUMO

The deformation behaviors and fracture features of GaP(100) single-crystal are investigated by using nano- and micro-scale indentation techniques. The hardness and Young's modulus were measured by nanoindentation using a Berkovich diamond indenter with continuous contact stiffness measurements (CSM) mode and the values obtained were 12.5 ± 1.2 GPa and 152.6 ± 12.8 GPa, respectively. In addition, the characteristic "pop-in" was observed in the loading portion of load-displacement curve, which was caused by the nucleation and/or propagation of dislocations. An energetic estimation methodology on the associated nanoindentation-induced dislocation numbers resulting from the pop-in events was discussed. Furthermore, the Vickers indentation induced fracture patterns of GaP(100) single-crystal were observed and analyzed using optical microscopy. The obtained fracture toughness KC of GaP(100) single-crystal was ~1.7 ± 0.1 MPa·m1/2, which is substantially higher than the KIC values of 0.8 MPa·m1/2 and 1.0 MPa·m1/2 previously reported for of single-crystal and polycrystalline GaP, respectively.

9.
Sci Rep ; 9(1): 15558, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664140

RESUMO

In this study, we sought to enhance the cutting properties of the various blades by coating them with Zr- and Fe-based thin film metallic glasses (TFMGs) to a thickness of 234-255 nm via sputter deposition. In oil-repellency/sliding tests on kitchen blades, the sliding angle and friction forces were as follows: bare blades (31.6°) and (35 µN), Ti-coated blades (20.3°) and (23.7 µN), and Z-TFMG coated blades (16.2°) and (19.2 µN). Comparisons were conducted with bare blades and those with a Teflon coating (a low-friction material commonly used for the coating of microtome blades). We also found that the Teflon coating reduced the cutting forces of an uncoated microtome blade by ~80%, whereas the proposed Z-TFMG achieved a ~51% reduction. The Z-TFMG presented no indications of delamination after being used 30 times for cutting; however, the Teflon coating proved highly susceptible to peeling and the bare blade was affected by surface staining. These results demonstrate the efficacy of the TFMG coating in terms of low friction, non-stick performance, and substrate adhesion. The performance of Z-TFMG and F-TFMG was also evaluated in split-thickness skin graft surgery using dermatome blades aimed at elucidating the influence of TFMG coatings on the healing of surgical incisions. When tested repeatedly on hairless skin, the surface roughness of uncoated blades increased by approximately 70%, whereas the surface roughness of TFMG-coated blades increases by only 8.6%. In the presence of hair, the surface roughness of uncoated blades increased by approximately ~108%, whereas the surface roughness of TFMG-coated blades increases by only ~23%. By Day 7, the wounds produced using TFMG-coated blades were noticeably smaller than those produced using uncoated blades, and these effects were particularly evident in hairy samples. This is a clear demonstration of the efficacy of TFMG surface coatings in preserving the cutting quality of surgical instruments.

10.
Stem Cell Res Ther ; 9(1): 126, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720250

RESUMO

BACKGROUND: Although adult human tissue-derived epidermal stem cells are capable of differentiating into enamel-secreting ameloblasts and forming teeth with regenerated enamel when recombined with mouse dental mesenchyme that possesses odontogenic potential, the induction rate is relatively low. In addition, whether the regenerated enamel retains a running pattern of prism identical to and acquires mechanical properties comparable with human enamel indeed warrants further study. METHODS: Cultured human keratinocyte stem cells (hKSCs) were treated with fibroblast growth factor 8 (FGF8) and Sonic hedgehog (SHH) for 18 h or 36 h prior to being recombined with E13.5 mouse dental mesenchyme with implantation of FGF8 and SHH-soaked agarose beads into reconstructed chimeric tooth germs. Recombinant tooth germs were subjected to kidney capsule culture in nude mice. Harvested samples at various time points were processed for histological, immunohistochemical, TUNEL, and western blot analysis. Scanning electronic microscopy and a nanoindentation test were further employed to analyze the prism running pattern and mechanical properties of the regenerated enamel. RESULTS: Treatment of hKSCs with both FGF8 and SHH prior to tissue recombination greatly enhanced the rate of tooth-like structure formation to about 70%. FGF8 and SHH dramatically enhanced stemness of cultured hKSCs. Scanning electron microscopic analysis revealed the running pattern of intact prisms of regenerated enamel is similar to that of human enamel. The nanoindentation test indicated that, although much softer than human child and adult mouse enamel, mechanical properties of the regenerated enamel improved as the culture time was extended. CONCLUSIONS: Application of FGF8 and SHH proteins in cultured hKSCs improves stemness but does not facilitate odontogenic fate of hKSCs, resulting in an enhanced efficiency of ameloblastic differentiation of hKSCs and tooth formation in human-mouse chimeric tooth germs.


Assuntos
Ameloblastos/metabolismo , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Animais , Criança , Pré-Escolar , Humanos , Camundongos , Camundongos Nus
11.
Sci Rep ; 7(1): 12252, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947743

RESUMO

In this study, the cross-talk effects and the basic piezoresistive characteristics of gold nanoparticle (Au-NP) incorporated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) pressure sensing 2 × 2 arrays are investigated using a cross-point electrode (CPE) structure. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) mappings were carried out to confirm the incorporation of Au-NPs in the PEDOT:PSS films. A solution mixing process was employed to incorporate the nanoparticles. When the diameter of the Au-NPs incorporated in the PEDOT:PSS films (Au-NPs/PEDOT:PSS) was 20 nm, the piezoresistive pressure sensing 2 × 2 arrays were almost immune to cross-talk effects, which enhances the pressure sensing accuracy of the array. The Au-NPs render the PEDOT:PSS films more resilient. This is confirmed by the high plastic resistance values using a nanoindenter, which reduce the interference between the active and passive cells. When the size of the Au-NPs is more than 20 nm, a significant cross-talk effect is observed in the pressure sensing arrays as a result of the high conductivity of the Au-NPs/PEDOT:PSS films with large Au-NPs. With the incorporation of optimally sized Au-NPs, the PEDOT:PSS piezoresistive pressure sensing arrays can be promising candidates for future high-resolution fingerprint identification system with multiple-electrode array structures.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Condutividade Elétrica , Ouro/análise , Pressão Hidrostática , Nanopartículas Metálicas/análise , Polímeros , Poliestirenos , Dermatoglifia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X
12.
J Formos Med Assoc ; 116(5): 373-379, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27502895

RESUMO

BACKGROUND/PURPOSE: Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. METHODS: A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. RESULTS: The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. CONCLUSION: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.


Assuntos
Ligas Dentárias/uso terapêutico , Instrumentos Odontológicos/efeitos adversos , Preparo de Canal Radicular/métodos , Propriedades de Superfície , Fraturas dos Dentes/prevenção & controle , Ligas , Boro/administração & dosagem , Falha de Equipamento , Vidro , Humanos , Teste de Materiais , Preparo de Canal Radicular/efeitos adversos , Preparo de Canal Radicular/instrumentação , Titânio/administração & dosagem , Fraturas dos Dentes/etiologia , Oligoelementos/administração & dosagem , Zircônio/administração & dosagem
13.
Opt Express ; 24(16): 17541-52, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505725

RESUMO

Photoresist and electron beam lithography techniques were used to fabricate embedded Ag bowtie and diabolo nanostructures with various apex angles on the surface of a TiO2 film. The reinforced localized surface plasmon resonance (LSPR) and electric field generated at both the Ag/TiO2 and air/TiO2 interfaces enabled high light absorbance in the TiO2 nanostructure. Results for both the bowtie and diabolo nanostructures showed that a reduction in the apex angle enhances both LSPR and Raman intensity. The maximum electric current density observed at the apex indicates that the strongest SPR confines at the tip gap of the bowtie and corners of the diabolo. In a long-wavelength region, as the apex angle increases, the resonant peak wavelength of the standing wave matches the increased length of the prism edges of the bowtie and diabolo to create a redshift. In a short-wavelength region, as the apex angle increases, the blueshift of the resonant peak wavelength is presumably attributable to the increase in the effective index of the local surface plasmon polariton standing wave mainly residing along both the bowtie and diabolo axes. The redshift and blueshift trend in the simulation results for the resonant peak wavelength agrees well with the experimental results. The fastest photocatalytic rate was obtained by placing the Ag/TiO2 bowtie at an apex angle of 30° in the methylene blue solution, revealing that the plasmonic photocatalysis causes the highest degradation efficiency. This is because the Schottky junction and LSPR can stimulate many valid radicals for the environmental improvement.

14.
Scanning ; 34(1): 51-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22532080

RESUMO

In this study, nanoscratching and nanomachining were conducted using an atomic force microscope (AFM) equipped with a doped diamond-coated probe (DDESP-10; VEECO) to evaluate the fabrication of nanopatterns on hard, Cr2N/Cu multilayer thin films. The influence of normal force, scratch speed, and repeated scratches on the properties of hard multilayer thin films was also investigated. The nanoscratch experiments led researchers to establish a probe preparation and selection criteria (PPS criteria) to enhance the stability and accuracy of machining hard materials. Experimental results indicate that the depth of grooves produced by nanoscratching increased with an increase in normal force, while an increase in the number of scratches in a single location increased the groove depth but decreased friction. Therelationships among normal force and groove depth more closely resembled a logarithmic form than other mathematical models, as did the relationship between repeated scratching and its effect on groove depth and friction. The influence of scratch speed on friction was divided into two ranges. Between 0.1 and 2 µm/s, friction decreased logarithmically with an increase in scratch speed; however, when the speed exceeded 2 µm/s, the friction appeared stable. In this study, multilayered coatings were successfully machined, demonstrating considerable promise for the fabrication of nanopatterns in multilayered coatings at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...