Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405966, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771978

RESUMO

Fluorescence imaging-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use. In this study, we transformed two ionic ICG derivatives into neutral merocyanines (mCy) to achieve much enhanced performance for NIR-II cancer phototheranostics. Initial designs of two ionic dyes showed similar drawbacks as ICG in terms of poor photostability and low photothermal performance. One of the modified neutral molecules, mCy890, shows significantly improved stability, an emission peak over 1000 nm, and a high photothermal PCE of 51%, all considerably outperform ICG. In vivo studies demonstrated that nanoparticles of the mCy890 can effectively accumulate at the tumor sites for cancer photothermal therapy guided by NIR-II fluorescence imaging. This research provides valuable insights into the development of neutral merocyanines for enhanced cancer phototheranostics. This article is protected by copyright. All rights reserved.

2.
Science ; 382(6667): eadf1226, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824650

RESUMO

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.


Assuntos
Encéfalo , Neurogênese , Primeiro Trimestre da Gravidez , Feminino , Humanos , Gravidez , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/embriologia , Neuroglia , Neurônios/citologia , Atlas como Assunto , Análise da Expressão Gênica de Célula Única
3.
Science ; 382(6667): eadd7046, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824663

RESUMO

The human brain directs complex behaviors, ranging from fine motor skills to abstract intelligence, but the diversity of cell types that support these skills has not been fully described. In this work, we used single-nucleus RNA sequencing to systematically survey cells across the entire adult human brain. We sampled more than three million nuclei from approximately 100 dissections across the forebrain, midbrain, and hindbrain in three postmortem donors. Our analysis identified 461 clusters and 3313 subclusters organized largely according to developmental origins and revealing high diversity in midbrain and hindbrain neurons. Astrocytes and oligodendrocyte-lineage cells also exhibited regional diversity at multiple scales. The transcriptomic census of the entire human brain presented in this work provides a resource for understanding the molecular diversity of the human brain in health and disease.


Assuntos
Encéfalo , Transcriptoma , Adulto , Humanos , Encéfalo/citologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Mesencéfalo , Neurônios/metabolismo , Prosencéfalo , Análise da Expressão Gênica de Célula Única
4.
Adv Mater ; : e2306492, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595570

RESUMO

Recently, many organic optoelectronic materials (OOMs), especially those used in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), are explored for biomedical applications including imaging and photoexcited therapies. In this review, recently developed OOMs for fluorescence imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy, are summarized. Relationships between their molecular structures, nanoaggregation structures, photophysical mechanisms, and properties for various biomedical applications are discussed. Mainly four kinds of OOMs are covered: thermally activated delayed fluorescence materials in OLEDs, conjugated small molecules and polymers in OSCs, and charge-transfer complexes in OFETs. Based on the OOMs unique optical properties, including excitation light wavelength and exciton dynamics, they are respectively exploited for suitable biomedical applications. This review is intended to serve as a bridge between researchers in the area of organic optoelectronic devices and those in the area of biomedical applications. Moreover, it provides guidance for selecting or modifying OOMs for high-performance biomedical uses. Current challenges and future perspectives of OOMs are also discussed with the hope of inspiring further development of OOMs for efficient biomedical applications.

5.
Biomolecules ; 13(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371482

RESUMO

In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Galectinas/metabolismo , Imunoterapia , Galectina 3 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais , Neoplasias/tratamento farmacológico
6.
Adv Mater ; 35(20): e2211632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868183

RESUMO

Molecular fluorophores with the second near-infrared (NIR-II) emission hold great potential for deep-tissue bioimaging owing to their excellent biocompatibility and high resolution. Recently, J-aggregates are used to construct long-wavelength NIR-II emitters as their optical bands show remarkable red shifts upon forming water-dispersible nano-aggregates. However, their wide applications in the NIR-II fluorescence imaging are impeded by the limited varieties of J-type backbone and serious fluorescence quenching. Herein, a bright benzo[c]thiophene (BT) J-aggregate fluorophore (BT6) with anti-quenching effect is reported for highly efficient NIR-II bioimaging and phototheranostics. The BT fluorophores are manipulated to have Stokes shift over 400 nm and aggregation-induced emission (AIE) property for conquering the self-quenching issue of the J-type fluorophores. Upon forming BT6 assemblies in an aqueous environment, the absorption over 800 nm and NIR-II emission over 1000 nm are boosted for more than 41 and 26 folds, respectively. In vivo visualization of the whole-body blood vessel and imaging-guided phototherapy results verify that BT6 NPs are excellent agent for NIR-II fluorescence imaging and cancer phototheranostics. This work develops a strategy to construct bright NIR-II J-aggregates with precisely manipulated anti-quenching properties for highly efficient biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Humanos , Corantes Fluorescentes/farmacologia , Fototerapia , Imagem Óptica/métodos
7.
Stem Cell Reports ; 18(1): 337-353, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36400027

RESUMO

Stem cell technologies provide new opportunities for modeling cells in health and disease and for regenerative medicine. In both cases, developmental knowledge and defining the molecular properties and quality of the cell types is essential. In this study, we identify developmental factors important for the differentiation of human embryonic stem cells (hESCs) into functional midbrain dopaminergic (mDA) neurons. We found that laminin-511, and dual canonical and non-canonical WNT activation followed by GSK3ß inhibition plus FGF8b, improved midbrain patterning. In addition, neurogenesis and differentiation were enhanced by activation of liver X receptors and inhibition of fibroblast growth factor signaling. Moreover, single-cell RNA-sequencing analysis revealed a developmental dynamics similar to that of the endogenous human ventral midbrain and the emergence of high-quality molecularly defined midbrain cell types, including mDA neurons. Our study identifies novel factors important for human midbrain development and opens the door for a future application of molecularly defined hESC-derived cell types in Parkinson disease.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Transcriptoma , Neurônios Dopaminérgicos/metabolismo , Diferenciação Celular/genética , Mesencéfalo
8.
Biomaterials ; 289: 121753, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057232

RESUMO

Diseases are often accompanied by abnormal expression of gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Sensing these gaseous markers is thus important for identification and investigation of pathological processes. In contrast to conventional approaches, such as electrochemical, chromatographical methods, etc., optical imaging shows merits including high sensitivity, good spatiotemporal resolution, and ideal selectivity. Especially, optical molecular probes with aggregation-induced emission (AIE) properties have good potential for bio-detection since they show maintained optical signals in the aggregated state. Recently, many AIE molecular probes have been developed for imaging disease-related gaseous signaling molecules. Generally, these probes recognize the analytes through turn-on or ratiometric approaches. This review summarizes the recent progress in organic probes with AIE properties for sensing gaseous markers and relative disease diagnosis applications. Based on the types of analytes, the probes are divided into three groups: NO, CO and H2S sensors. Molecular designs and sensing mechanisms of these AIE probes are highlighted. Their gaseous signaling molecules detection applications at cellular and animal levels are presented. Finally, some existing problems and future promising development directions are discussed with the hope to inspire further developments of AIE probes for precise disease diagnosis.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Monóxido de Carbono , Corantes Fluorescentes/química , Gases , Sondas Moleculares , Óxido Nítrico
9.
Acute Crit Care ; 37(3): 286-294, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35791658

RESUMO

BACKGROUND: Early intensive care unit (ICU) protocolized rehabilitative programs have been described previously, yet with differing starting time points and mostly on mechanically ventilated patients. We extended the concept to all admitted ICU patients and investigate the efficacy of early mobilization in improving mobility of the critically ill, address issues surrounding the timing and intensity of an early rehabilitative program. METHODS: Prospective cohorts of patients admitted consecutively before-and-after (control, n=92; intervention, n=90) the introduction of an early mobilization program in a single center, general hospital ICU. Improvement in mobility as assessed by ICU mobility score, on ICU admission and upon ICU discharge, was measured as a primary outcome. RESULTS: Those receiving early mobilization in the intensive care unit had higher ICU mobility score (2.63; 95% confidence interval, 0.65-4.61; P<0.001) upon discharge from the intensive care, with earlier out of bed mobilization on day 5 compared to the control group of day 21 (P<0.001). No differences were found in terms of mortality, intensive care hospitalization and subsequent hospitalization duration after discharge from ICU. CONCLUSIONS: Here, we report that improvement in mobility score earlier in the course of intensive care hospitalization with the introduction of a protocolized early rehabilitative program.

10.
Adv Healthc Mater ; 10(10): e2100055, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738983

RESUMO

Photodynamic therapy (PDT) is extensively explored for anticancer and antibacterial applications. It typically relies on oxygen-dependent generation of reactive oxygen species (ROS) to realize its killing effect. This type of therapy modality shows compromised therapeutic results for treating hypoxic tumors or bacteria-infected wounds. Recently, alkyl radicals attracted much attention as they can be generated from some azo-based initiators only under mild heat stimulus without oxygen participation. Many nanocarriers or hydrogel systems have been developed to load and deliver these radical initiators to lesion sites for theranostics. These systems show good anticancer or antimicrobial effect in hypoxic environment and some of them possess specific imaging abilities providing precise guidance for treatment. This review summarizes the developed materials that aim at treating hypoxic cancer and bacteria-infected wound by using this kind of oxygen-irrelevant alkyl radicals. Based on the carrier components, these agents are divided into three groups: inorganic, organic, as well as inorganic and organic hybrid carrier-based therapeutic systems. The construction of these agents and their specific advantages in biomedical field are highlighted. Finally, the existing problems and future promising development directions are discussed.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia , Neoplasias/tratamento farmacológico , Oxigênio , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
11.
Nature ; 566(7745): 543-547, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30747918

RESUMO

Oligodendrocyte pathology is increasingly implicated in neurodegenerative diseases as oligodendrocytes both myelinate and provide metabolic support to axons. In multiple sclerosis (MS), demyelination in the central nervous system thus leads to neurodegeneration, but the severity of MS between patients is very variable. Disability does not correlate well with the extent of demyelination1, which suggests that other factors contribute to this variability. One such factor may be oligodendrocyte heterogeneity. Not all oligodendrocytes are the same-those from the mouse spinal cord inherently produce longer myelin sheaths than those from the cortex2, and single-cell analysis of the mouse central nervous system identified further differences3,4. However, the extent of human oligodendrocyte heterogeneity and its possible contribution to MS pathology remain unknown. Here we performed single-nucleus RNA sequencing from white matter areas of post-mortem human brain from patients with MS and from unaffected controls. We identified subclusters of oligodendroglia in control human white matter, some with similarities to mouse, and defined new markers for these cell states. Notably, some subclusters were underrepresented in MS tissue, whereas others were more prevalent. These differences in mature oligodendrocyte subclusters may indicate different functional states of oligodendrocytes in MS lesions. We found similar changes in normal-appearing white matter, showing that MS is a more diffuse disease than its focal demyelination suggests. Our findings of an altered oligodendroglial heterogeneity in MS may be important for understanding disease progression and developing therapeutic approaches.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Esclerose Múltipla/patologia , Oligodendroglia/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia , Biomarcadores , Estudos de Casos e Controles , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/metabolismo , Remielinização/genética , Análise de Sequência de RNA , Transcrição Gênica , Substância Branca/citologia , Substância Branca/metabolismo , Substância Branca/patologia
12.
ChemMedChem ; 11(8): 881-92, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26805515

RESUMO

Macrocycles have several advantages over small-molecule drugs when it comes to addressing specific protein-protein interactions as therapeutic targets. Herein we report the synthesis of seven new cyclic peptide molecules and their biological activity. These macrocycles were designed to understand how moving an N-methyl moiety around the peptide backbone impacts biological activity. Because the lead non-methylated structure inhibits the oncogenic regulator heat-shock protein 90 (Hsp90), two of the most potent analogues were evaluated for their Hsp90 inhibitory activity. We show that incorporating an N-methyl moiety controls the conformation of the macrocycle, which dramatically impacts cytotoxicity and binding affinity for Hsp90. Thus, the placement of an N-methylated amino acid within a macrocycle generates an unpredictable change to the compound's conformation and hence biological activity.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Metilação , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...