Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fertil Steril ; 120(2): 268-276, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36940739

RESUMO

OBJECTIVE: To evaluate the attachment rate of a human embryonic stem cell-derived trophoblastic spheroid onto endometrial epithelial cells in predicting the cumulative live birth rate of an in vitro fertilization (IVF) cycle. DESIGN: A prospective observational study. SETTING: University hospital and research laboratory. PATIENT(S): A total of 240 infertile women from 2017-2021. INTERVENTION(S): Infertile women with regular cycles attending for IVF were recruited. An endometrial aspirate was collected from a natural cycle 1 month before IVF to determine the BAP-EB attachment rate. MAIN OUTCOME MEASURE(S): Cumulative live birth rates from a stimulated cycle and its derived frozen embryo transfer cycles within 6 months of ovarian stimulation were obtained. RESULT(S): The BAP-EB attachment rate in women who attained a cumulative live birth was similar to that in those who did not. When women were stratified by age into <35 years and ≥35 years, the BAP-EB attachment rate was significantly higher only in women aged ≥35 years having a live birth when compared with those in the same age group without a live birth. Receiver operating characteristic curve analysis of BAP-EB attachment rate in predicting cumulative live birth showed the areas under the curve of 0.559 (95% confidence interval [CI], 0.479-0.639), 0.448 (95% CI, 0.310-0.585), and 0.613 (95% CI, 0.517-0.710) for all ages, an age of <35 years, and an age of ≥35 years, respectively. CONCLUSION(S): The BAP-EB attachment rate offers only a very modest prediction of the cumulative live birth rate in women aged ≥35 years undergoing IVF. CLINICAL TRIAL REGISTRATION NUMBER: NCT02713854 (https://clinicaltrials.gov/ct2/show/NCT02713854; Date of registration, March 21, 2016; date of enrollment of the first subject, August 1, 2017).


Assuntos
Infertilidade Feminina , Nascido Vivo , Gravidez , Humanos , Feminino , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/terapia , Fertilização in vitro , Transferência Embrionária , Coeficiente de Natalidade , Indução da Ovulação , Taxa de Gravidez
2.
Adv Sci (Weinh) ; 10(11): e2204797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775869

RESUMO

Human expanded potential stem cells (hEPSC) have been derived from human embryonic stem cells and induced pluripotent stem cells. Here direct derivation of hEPSC from human pre-implantation embryos is reported. Like the reported hEPSC, the embryo-derived hEPSC (hEPSC-em) exhibit a transcriptome similar to morula, comparable differentiation potency, and high genome editing efficiency. Interestingly, the hEPSC-em show a unique H3 lysine-4 trimethylation (H3K4me3) open chromatin conformation; they possess a higher proportion of H3K4me3 bound broad domain (>5 kb) than the reported hEPSC, naive, and primed embryonic stem cells. The open conformation is associated with enhanced trophoblast differentiation potency with increased trophoblast gene expression upon induction of differentiation and success in derivation of trophoblast stem cells with bona fide characteristics. Hippo signaling is specifically enriched in the H3K4me3 broad domains of the hEPSC-. Knockout of the Hippo signaling gene, YAP1 abolishes the ability of the embryo-derived EPSC to form trophoblast stem cells.


Assuntos
Cromatina , Trofoblastos , Humanos , Trofoblastos/metabolismo , Diferenciação Celular/genética , Embrião de Mamíferos , Células-Tronco Embrionárias
3.
Reproduction ; 165(3): 335-346, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656637

RESUMO

In brief: Implantation failure can occur even after the transfer of good-quality embryos. This study showed that the migration of human endometrial stromal cells towards embryonic trophoblasts is higher in women with live births in the first in vitro fertilization cycle than those with repeated implantation failure, suggesting that the chemotactic response of stroma cells is associated with successful pregnancy. Abstract: The success rate of in vitro fertilization (IVF) remains limited in some women despite transfers of good-quality embryos in repeated attempts. There is no reliable tool for assessing endometrial receptivity. This study aimed to assess the interaction between decidualized human primary endometrial stromal cells (1°-EnSC) and human embryonic stem cell-derived trophoblastic spheroids (BAP-EB) and to compare the invasion ability of decidualized 1°-EnSC towards BAP-EB between women attaining live birth in the first IVF cycle and those with repeated implantation failure (RIF). The invasion of the decidualized human endometrial cell line (T-HESC) and 1°-EnSC towards BAP-EB was studied. Real-time quantitative PCR and immunocytochemistry were employed to determine the expression of decidualization markers at mRNA and protein levels, respectively. Trophoblast-like BAP-EB-96h, instead of early trophectoderm (TE)-like BAP-EB-48h, facilitated the invasion ability of decidualized T-HESC and decidualized 1°-EnSC. Human chorionic gonadotropin at supra-physiological levels promoted the invasiveness of decidualized 1°-EnSC. The extent of BAP-EB-96h-induced invasion was significantly stronger in decidualized 1°-EnSC from women who had a live birth in the first IVF cycle when compared to those with RIF. While no difference was found in the expression of decidualization markers, PRL and IGFBP1 among two groups of women, significantly lower HLA-B was detected in the non-decidualized and decidualized 1°-EnSC from women with RIF. Collectively, the findings suggested that the invasion of decidualized 1°-EnSC towards trophoblast-like BAP-EB-96h was higher in women who had a live birth in the first IVF cycle than those with RIF.


Assuntos
Implantação do Embrião , Trofoblastos , Feminino , Humanos , Gravidez , Linhagem Celular , Gonadotropina Coriônica , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo , Falha de Tratamento
4.
Genes (Basel) ; 12(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680943

RESUMO

Pluripotent stem cells (PSCs) hold great promise in cell-based therapy because of their pluripotent property and the ability to proliferate indefinitely. Embryonic stem cells (ESCs) derived from inner cell mass (ICM) possess unique cell cycle control with shortened G1 phase. In addition, ESCs have high expression of homologous recombination (HR)-related proteins, which repair double-strand breaks (DSBs) through HR or the non-homologous end joining (NHEJ) pathway. On the other hand, the generation of induced pluripotent stem cells (iPSCs) by forced expression of transcription factors (Oct4, Sox2, Klf4, c-Myc) is accompanied by oxidative stress and DNA damage. The DNA repair mechanism of DSBs is therefore critical in determining the genomic stability and efficiency of iPSCs generation. Maintaining genomic stability in PSCs plays a pivotal role in the proliferation and pluripotency of PSCs. In terms of therapeutic application, genomic stability is the key to reducing the risks of cancer development due to abnormal cell replication. Over the years, we and other groups have identified important regulators of DNA damage response in PSCs, including FOXM1, SIRT1 and PUMA. They function through transcription regulation of downstream targets (P53, CDK1) that are involved in cell cycle regulations. Here, we review the fundamental links between the PSC-specific HR process and DNA damage response, with a focus on the roles of FOXM1 and SIRT1 on maintaining genomic integrity.


Assuntos
Ciclo Celular , Dano ao DNA , Células-Tronco Pluripotentes/metabolismo , Animais , Humanos , Células-Tronco Pluripotentes/fisiologia
5.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639069

RESUMO

The prevalence of type 2 diabetes (T2D) is rapidly increasing across the globe. Fetal exposure to maternal diabetes was correlated with higher prevalence of impaired glucose tolerance and T2D later in life. Previous studies showed aberrant DNA methylation patterns in pancreas of T2D patients. However, the underlying mechanisms remained largely unknown. We utilized human embryonic stem cells (hESC) as the in vitro model for studying the effects of hyperglycemia on DNA methylome and early pancreatic differentiation. Culture in hyperglycemic conditions disturbed the pancreatic lineage potential of hESC, leading to the downregulation of expression of pancreatic markers PDX1, NKX6-1 and NKX6-2 after in vitro differentiation. Genome-wide DNA methylome profiling revealed over 2000 differentially methylated CpG sites in hESC cultured in hyperglycemic condition when compared with those in control glucose condition. Gene ontology analysis also revealed that the hypermethylated genes were enriched in cell fate commitment. Among them, NKX6-2 was validated and its hypermethylation status was maintained upon differentiation into pancreatic progenitor cells. We also established mouse ESC lines at both physiological glucose level (PG-mESC) and conventional hyperglycemia glucose level (HG-mESC). Concordantly, DNA methylome analysis revealed the enrichment of hypermethylated genes related to cell differentiation in HG-mESC, including Nkx6-1. Our results suggested that hyperglycemia dysregulated the epigenome at early fetal development, possibly leading to impaired pancreatic development.


Assuntos
Diferenciação Celular/genética , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Diabetes Mellitus Tipo 2 , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo
6.
Fertil Steril ; 114(3): 653-664.e6, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444068

RESUMO

OBJECTIVE: To study the use of human embryonic stem cell-derived trophoblastic spheroids (BAP-EB) as human blastocyst surrogates for studying early implantation and trophoblast development. DESIGN: Laboratory study. SETTING: University research laboratory. PATIENT(S): Infertile in vitro fertilization patients donating endometrial aspirates and human embryonic stem cells (hESCs: VAL3 and H9/WA09). INTERVENTION(S): In BAP-EB derived from hESC, transcriptomes analyzed by next-generation RNA sequencing, effects of Hippo signaling pathway studied by a YAP inhibitor, comparison of attachment of BAP-EB onto primary endometrial epithelial cells (EEC) collected at prereceptive and receptive phases, and antibody blocking assay used to study the molecule(s) involved in BAP-EB attachment. MAIN OUTCOME MEASURE(S): Gene expression profiles and endometrial cell attachment rates. RESULT(S): The BAP-EB differentiation protocol for VAL3 could be used to induce trophoblast differentiation in another hESC line, H9. Transcriptomic analysis showed that the epiblast signature gene expression was reduced while that of the trophoblast was induced during BAP-EB differentiation. Specifically, trophectoderm signature genes were induced in BAP-EB at 48 hours and 72 hours after induction of differentiation. The Hippo signaling pathway was one of the pathways induced during BAP-EB differentiation, and YAP1 inhibitor statistically significantly reduced attachment, outgrowth, and trophoblast gene expressions of BAP-EB. A statistically significantly higher number of BAP-EB derived from both VAL3 and H9 attached onto receptive EEC than prereceptive EEC. The antibody blocking assay demonstrated that endometrial E-cadherin might be critical in early implantation. CONCLUSION(S): The data suggest that BAP-EB possesses a trophectoderm-like signature, which supports the use of BAP-EB as a blastocyst surrogate for the study of trophoblast development and endometrial receptivity.


Assuntos
Blastocisto/fisiologia , Implantação do Embrião , Células-Tronco Embrionárias/fisiologia , Endométrio/fisiologia , Blastocisto/citologia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Endométrio/citologia , Células Endoteliais/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transdução de Sinais , Esferoides Celulares , Fatores de Tempo , Transcriptoma , Trofoblastos/fisiologia
7.
Differentiation ; 105: 33-44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30599359

RESUMO

Gap junctional intercellular communication (GJIC) is important for maintaining the pluripotency of mouse embryonic stem cells (mESC). However, human ESC (hESC) have a high level of connexin (Cx) molecules with unknown function. In this study, we found that the major Cx molecule, Cx43, was highly expressed in undifferentiated hESC. It was down-regulated upon spontaneously differentiation by embryoid body formation and induced differentiation along ectoderm, mesoderm and extraembryonic lineages, but up-regulated along endoderm differentiation. The knockdown of Cx43 and GJIC had no effect on the maintenance of hESC, as demonstrated by no morphological changes and similar expression levels of pluripotent markers (OCT4, NANOG, SSEA-3 and SSEA-4) and early differentiation markers (KRT8 and KRT18). Meanwhile, Cx43 knock down had no effect on endodermal markers (SOX17, FOXA2 and CXCR4) expression when hESC were differentiating into definitive endoderm lineage. On the contrary, it led to lower levels of mesodermal markers (CD56, CD34 and PDGFR-α) when cells were undergoing mesoderm differentiation. When compared to control, Cx43 knockdown led to higher attachment rate, HCG secretion and cell invasion of the hESC derived trophoblastic cells. Cx43 knockdown also resulted in up-regulated expressions of placental hormone (ß-hCG) and implantation related genes (LIFR, CDH5, LEP, PGF, TGFBR2). Our study suggested that Cx43 and GJIC had no effect on the undifferentiated growth of hESC but affected specific lineage differentiation.


Assuntos
Diferenciação Celular , Conexina 43/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Comunicação Celular , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
8.
Int J Biol Sci ; 13(10): 1309-1319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104497

RESUMO

Background: Vein graft failure due to neointimal hyperplasia remains an important and unresolved complication of cardiovascular surgery. microRNA-21 (miR-21) plays a major role in regulating vascular smooth muscle cell (VSMC) proliferation and phenotype transformation. Thus, the purpose of this study was to determine whether adenovirus-mediated miR-21 sponge gene therapy was able to inhibit neointimal hyperplasia in rat vein grafts. Methods: Adenovirus-mediated miR-21 sponge was used to inhibit VSMC proliferation in vitro and neointimal formation in vivo. To improve efficiency of delivery gene transfer to the vein grafts, 20% poloxamer F-127 gel was used to increase virus contact time and 0.25% trypsin to increase virus penetration. Morphometric analyses and cellular proliferation were assessed for neointimal hyperplasia and VSMC proliferation. Results: miR-21 sponge can significantly decrease the expression of miR-21 and proliferation in cultured VSMCs. Cellular proliferation rates were significantly reduced in miR-21 sponge-treated grafts compared with controls at 28 days after bypass surgery (14.6±9.4 vs 34.9±10.8%, P=0.0032). miR-21 sponge gene transfer therapy reduced the intimal/media area ratio in vein grafts compared with the controls (1.38±0.08 vs. 0.6±0.10, P<0.0001). miR-21 sponge treatment also improved vein graft hemodynamics. We further identified that phosphatase and tensin homolog (PTEN) is a potential target gene that was involved in the miR-21-mediated effect on neointimal hyperplasia in vein grafts. Conclusions: Adenovirus-mediated miR-21 sponge gene therapy effectively reduced neointimal formation in vein grafts. These results suggest that there is potential for miR-21 sponge to be used to prevent vein graft failure.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Animais , Técnicas de Transferência de Genes , Masculino , Neointima/genética , Neointima/metabolismo , Ratos , Ratos Sprague-Dawley , Túnica Íntima/metabolismo
9.
Int J Cardiol ; 208: 79-86, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828387

RESUMO

BACKGROUND: Vein graft failure due to neointimal hyperplasia remains an important and unresolved problem of cardiovascular surgery. MicroRNA-221 (miR-221) has been shown to play a major role in regulating vascular smooth muscle cell (VSMC) proliferation and phenotype transformation. Thus, the purpose of this study is to determine whether adenovirus mediated miR-221 sponge gene therapy could inhibit vein graft neointimal hyperplasia. METHODS: Adenovirus encoding miR-221 sponge (Ad-miR-221-SP) was used to inhibit VSMC proliferation in vitro and neointimal formation in vivo. Expression of miRNA-221 was evaluated in cultured VSMC and in rat vein graft models following transduction with Ad-miR-221-SP, Ad-Control-SP (without miR-221 antisense binding sites), or Ad-GFP (control). To accelerate the transfer of miR-221 sponge gene to the vein grafts, 20% poloxamer F-127 gel was used to extend virus contact time and 0.25% trypsin to increase virus penetration. RESULTS: miR-221 sponges can significantly decrease the expression of miR-221 and proliferation in cultured VSMC. Cellular proliferation rates were significantly reduced in miR-221 sponge treated grafts as compared with controls at 6 weeks after bypass surgery (19.8% versus 43.6%, P=0.0028). miR-221 sponge gene transfer reduced the neointimal area (210.75 ± 24.13 versus 67.01 ± 12.02, P<0.0001), neointimal thickness (171.86 ± 27.87 versus 64.13 ± 16.23, P<0.0001) and neointima/media ratio (0.74 ± 0.21 versus 1.95 ± 0.25, P<0.0001) in vein grafts versus controls. miR-21 sponge treatment was also improved hemodynamics in vein grafts. We have further identified that p27 (Kip1) is a potential target gene of miR-221 in vein grafts. CONCLUSION: miR-221 sponge therapy can significantly reduce miR-221 activity and inhibit neointimal hyperplasia in vein grafts. Locally adventitial delivery of adenoviruses mediated miRNA sponges may be promising gene therapies to prevent vein graft failure.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Terapia Genética/métodos , Veias Jugulares/transplante , MicroRNAs/administração & dosagem , Neointima/terapia , Enxerto Vascular/métodos , Adenoviridae/genética , Animais , Células Cultivadas , Hiperplasia/genética , Hiperplasia/fisiopatologia , Hiperplasia/terapia , Veias Jugulares/fisiologia , Masculino , MicroRNAs/genética , Músculo Liso Vascular/fisiologia , Músculo Liso Vascular/transplante , Neointima/genética , Neointima/fisiopatologia , Ratos , Ratos Sprague-Dawley
10.
Nucleic Acids Res ; 42(7): 4375-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500196

RESUMO

The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.


Assuntos
Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Inativação Gênica , Humanos , Camundongos , Proteínas Recombinantes de Fusão/química , Fatores de Transcrição/genética , Fatores de Transcrição de p300-CBP/metabolismo , Pequeno RNA não Traduzido
11.
Biomedicines ; 1(1): 49-78, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28548056

RESUMO

Since the successful isolation of mouse and human embryonic stem cells (ESCs) in the past decades, massive investigations have been conducted to dissect the pluripotency network that governs the ability of these cells to differentiate into all cell types. Beside the core Oct4-Sox2-Nanog circuitry, accumulating regulators, including transcription factors, epigenetic modifiers, microRNA and signaling molecules have also been found to play important roles in preserving pluripotency. Among the various regulations that orchestrate the cellular pluripotency program, transcriptional regulation is situated in the central position and appears to be dominant over other regulatory controls. In this review, we would like to summarize the recent advancements in the accumulating findings of new transcription factors that play a critical role in controlling both pluripotency network and ESC identity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...