Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(47): 19503-19520, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972161

RESUMO

Cytotoxin-producing Klebsiella oxytoca is the causative agent of antibiotic-associated hemorrhagic colitis (AAHC). Recently, the cytotoxin associated with AAHC was identified as tilivalline, a known pentacyclic pyrrolobenzodiazepine (PBD) metabolite produced by K. oxytoca Although this assertion of tilivalline's role in AAHC is supported by evidence from animal experiments, some key aspects of this finding appear to be incompatible with toxicity mechanisms of known PBD toxins. We therefore hypothesized that K. oxytoca may produce some other uncharacterized cytotoxins. To address this question, we investigated whether tilivalline alone is indeed necessary and sufficient to induce cytotoxicity or whether K. oxytoca also produces other cytotoxins. LC-MS- and NMR-based metabolomic analyses revealed the presence of an abundant tricyclic PBD, provisionally designated kleboxymycin, in the supernatant of toxigenic K. oxytoca strains. Moreover, by generating multiple mutants with gene deletions affecting tilivalline biosynthesis, we show that a tryptophanase-deficient, tilivalline-negative K. oxytoca mutant induced cytotoxicity in vitro similar to tilivalline-positive K. oxytoca strains. Furthermore, synthetic kleboxymycin exhibited greater than 9-fold higher cytotoxicity than tilivalline in TC50 cell culture assays. We also found that the biosynthetic pathways for kleboxymycin and tilivalline appear to overlap, as tilivalline is an indole derivative of kleboxymycin. In summary, our results indicate that tilivalline is not essential for inducing cytotoxicity observed in K. oxytoca-associated AAHC and that kleboxymycin is a tilivalline-related bacterial metabolite with even higher cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Benzodiazepinonas/farmacologia , Citotoxinas/farmacologia , Enterocolite Pseudomembranosa/patologia , Klebsiella oxytoca/metabolismo , Neoplasias Laríngeas/patologia , Antibacterianos/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Enterocolite Pseudomembranosa/induzido quimicamente , Enterocolite Pseudomembranosa/microbiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/efeitos dos fármacos , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/microbiologia , Peptídeos/farmacologia , Células Tumorais Cultivadas
2.
Life Sci ; 71(9): 1081-90, 2002 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-12088767

RESUMO

The effects of timosaponin A-III (TA-III), from Rhizoma Anemarrhenae, on Ca(2+) mobilization in vascular endothelial cells and smooth muscle cells and on vascular tension have been explored. TA-III increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) in endothelials cells at a concentration larger than 5 microM with an EC(50) of 15 microM, and increased [Ca(2+)](i) in smooth muscle cells at a concentration larger than 1 microM with an EC(50) of 8 microM. Within 5 min, the [Ca(2+)](i) signal was composed of a gradual rise, and the speed of rising depended on the concentration of TA-III. The [Ca(2+)](i) signal was abolished by removing extracellular Ca(2+) and was recovered after reintroduction of Ca(2+). The TA-III-induced [Ca(2+)](i) increases in smooth muscle cells were partly inhibited by 10 microM nifedipine or 50 microM La(3+), but was insensitive to 10 microM verapamil and diltiazem. TA-III (10-100 microM) inhibited 0.3 microM phenylephrine-induced vascular contraction, which was abolished by pretreatment with 100 microM N(omega)-nitro-L-arginine (L-NNA) or by denuding the aorta. TA-III also increased [Ca(2+)](i) in renal tubular cells with an EC(50) of 8 microM. Collectively, the results show for the first time that TA-III causes [Ca(2+)](i) increases in the vascular system. TA-III acted by causing Ca(2+) influx without releasing intracellular Ca(2+). TA-III induced relaxation of phenylephrine-induced vascular contraction via inducing release of nitric oxide from endothelial cells.


Assuntos
Cálcio/metabolismo , Endotélio Vascular/efeitos dos fármacos , Liliaceae/química , Animais , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Masculino , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia
3.
Breast Cancer Res Treat ; 71(2): 125-31, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11881910

RESUMO

Tamoxifen has been shown to increase cytoplasmic free Ca2+ levels [Ca2+]i in renal tubular cells and bladder cancer cells, and to after Ca2+ signaling in MCF-7 breast cancer cells. The present study examined the effect of tamoxifen on [Ca2+], in ZR-75-1 human breast cancer cells using fura-2 as an indicator. Tamoxifen increased [Ca2+]i at a concentration above 2 microM with an EC50 of 5 microM. Removing extracellular Ca2+ reduced the response by 48+/-2%. In Ca2+-free medium, after tamoxifen-induced [Ca2+]i increased had returned to baseline, adding 3 mM Ca2+ increased [Ca2+]i in a concentration-dependent manner. Further, pretreatment with 10 microM tamoxifen abolished the [Ca2+]i increase induced by 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor); and conversely, pretreatment with thapsigargin prevented tamoxifen from releasing more Ca2+. Tamoxifen (10 microM)-induced Ca2+ release was not changed by inhibiting phospholipase C activity with 2 microM U73122. Trypan blue exclusion assay revealed that tamoxifen (1-10 microM) did not alter viability after 1 min of incubation, but killed 10% of cells after 3-10 min of incubation. Together, this study shows that tamoxifen (>2 microM) induced a significant, immediate increase in [Ca2+]i in ZR-75-1 breast cancer cells. Tamoxifen acted by releasing Ca2+ from the endoplasmic reticulum Ca2+ stores in a manner independent of phospholipase C activity, and by inducing Ca2+ entry from extracellular medium. Tamoxifen may be of mild cytotoxicity after acute exposure.


Assuntos
Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Citoplasma/metabolismo , Tamoxifeno/farmacologia , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Feminino , Humanos , Cinética , Tapsigargina/farmacologia , Células Tumorais Cultivadas , Fosfolipases Tipo C/metabolismo
4.
Arch Toxicol ; 75(11-12): 695-702, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11876502

RESUMO

The effects of five lignans (epi-aschantin, epi-magnolin, epi-yangambin, deoxypodophyllotoxin, yatein) isolated from Hernandia nymphaeifolia (Presl.) Kubitzki (Hernandiaceae) on intracellular Ca2+ levels ([Ca2+]i) in human neutrophils were investigated by using fura-2 as a fluorescent probe. In both Ca2+-containing and Ca2+-free media, the lignans (50-100 microM) did not alter basal [Ca2+]i but inhibited the [Ca2+]i increase induced by platelet activating factor (PAF, 10 microM), leukotriene B4 (LTB4, 0.2 microM), and thapsigargin (1 microM) to different extents. In Ca2+-free medium, after depleting stores of Ca2+ with PAF, LTB4 or thapsigargin, addition of 3 mM Ca2+ induced Ca2+ influx. Each of the lignans (50-100 microM) caused 39-89% inhibition of PAF-induced Ca2+ influx; whereas only epi-aschantin was able to inhibit LTB4- and thapsigargin-induced Ca2+ influx by 54-79%. Together, the results suggest that in human neutrophils, these lignans did not alter basal [Ca2+]i but inhibited Ca2+ movement induced by Ca2+ mobilizing agents.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Lignanas/farmacologia , Magnoliopsida/química , Neutrófilos/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Corantes Fluorescentes/metabolismo , Fura-2/metabolismo , Humanos , Leucotrieno B4/farmacologia , Neutrófilos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Tapsigargina/farmacologia
5.
Pharmacology ; 64(2): 84-90, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11803248

RESUMO

The effect of 17beta-estradiol on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney cells was investigated by using the fluorescent dye fura-2. 17Beta-estradiol (5-100 micromol/l) induced instantaneous increases in [Ca(2+)](i) in a concentration-dependent manner. Ca(2+) removal inhibited 45 +/- 15% of the Ca(2+) signal. In Ca(2+)-free medium, pretreatment with 50 micromol/l 17beta-estradiol abolished the [Ca(2+)](i) increases induced by 2 micromol/l carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), 1 micromol/l thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) and 50 micromol/l brefeldin A (an antibiotic which disperses the Golgi complex), but pretreatment with brefeldin A, CCCP and thapsigargin only partly inhibited the 17beta-estradiol-induced [Ca(2+)](i) signal. Adding 3 mmol/l Ca(2+) increased [Ca(2+)](i) in cells pretreated with 5-100 micromol/l 17beta-estradiol in Ca(2+)-free medium. Pretreatment with 1 micromol/l U73122 to abolish the formation of inositol-1,4,5-trisphosphate inhibited 50% of the Ca(2+) release induced by 50 micromol/l 17beta-estradiol. 17Beta-estradiol (20 micromol/l) also increased [Ca(2+)](i) in human bladder cancer cells and prostate cancer cells. Collectively, this study shows that 17beta-estradiol evoked a significant internal Ca(2+) release and external Ca(2+) entry possibly in a nongenomic manner.


Assuntos
Cálcio/metabolismo , Estradiol/farmacologia , Túbulos Renais/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Brefeldina A/farmacologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Transporte de Íons/efeitos dos fármacos , Ionóforos/farmacologia , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Macrolídeos , Masculino , Pirrolidinonas/farmacologia , Tapsigargina/farmacologia , Células Tumorais Cultivadas , Desacopladores/farmacologia
6.
Neurochem Int ; 40(3): 249-54, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11741008

RESUMO

The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.


Assuntos
Cálcio/metabolismo , Glioma/metabolismo , Membranas Intracelulares/metabolismo , Masoprocol/farmacologia , Animais , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Espaço Extracelular/metabolismo , Lipoxigenase/fisiologia , Concentração Osmolar , Células Tumorais Cultivadas , Fosfolipases Tipo C/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...