Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34172517

RESUMO

BACKGROUND: Therapeutic regimens designed to augment the immunological response of a patient with breast cancer (BC) to tumor tissue are critically informed by tumor mutational burden and the antigenicity of expressed neoepitopes. Herein we describe a neoepitope and cognate neoepitope-reactive T-cell identification and validation program that supports the development of next-generation immunotherapies. METHODS: Using GPS Cancer, NantOmics research, and The Cancer Genome Atlas databases, we developed a novel bioinformatic-based approach which assesses mutational load, neoepitope expression, human leukocyte antigen (HLA)-binding prediction, and in vitro confirmation of T-cell recognition to preferentially identify targetable neoepitopes. This program was validated by application to a BC cell line and confirmed using tumor biopsies from two patients with BC enrolled in the Tumor-Infiltrating Lymphocytes and Genomics (TILGen) study. RESULTS: The antigenicity and HLA-A2 restriction of the BC cell line predicted neoepitopes were determined by reactivity of T cells from HLA-A2-expressing healthy donors. For the TILGen subjects, tumor-infiltrating lymphocytes (TILs) recognized the predicted neoepitopes both as peptides and on retroviral expression in HLA-matched Epstein-Barr virus-lymphoblastoid cell line and BC cell line MCF-7 cells; PCR clonotyping revealed the presence of T cells in the periphery with T-cell receptors for the predicted neoepitopes. These high-avidity immune responses were polyclonal, mutation-specific and restricted to either HLA class I or II. Interestingly, we observed the persistence and expansion of polyclonal T-cell responses following neoadjuvant chemotherapy. CONCLUSIONS: We demonstrate our neoepitope prediction program allows for the successful identification of neoepitopes targeted by TILs in patients with BC, providing a means to identify tumor-specific immunogenic targets for individualized treatment, including vaccines or adoptively transferred cellular therapies.


Assuntos
Antígenos de Neoplasias/genética , Neoplasias da Mama/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia/métodos , Feminino , Humanos
2.
Cancer Immunol Immunother ; 70(4): 875-885, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33033852

RESUMO

Clinical successes have been achieved with checkpoint blockade therapy, which facilitates the function of T cells recognizing tumor-specific mutations known as neoepitopes. It is a reasonable hypothesis that therapeutic cancer vaccines targeting neoepitopes uniquely expressed by a patient's tumor would prove to be an effective therapeutic strategy. With the advent of high-throughput next generation sequencing, it is now possible to rapidly identify these tumor-specific mutations and produce therapeutic vaccines targeting these patient-specific neoepitopes. However, initial reports suggest that when used as a monotherapy, neoepitope-targeted vaccines are not always sufficient to induce clinical responses in some patients. Therefore, research has now turned to investigating neoepitope vaccines in combination with other cancer therapies, both immune and non-immune, to improve their clinical efficacies.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Epitopos/imunologia , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/terapia , Animais , Vacinas Anticâncer/administração & dosagem , Terapia Combinada , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo
3.
Clin Cancer Res ; 26(3): 704-716, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31645354

RESUMO

PURPOSE: Immunotherapy has demonstrated clinical efficacy in subsets of patients with solid carcinomas. Multimodal therapies using agents that can affect different arms of the immune system and/or tumor microenvironment (TME) might increase clinical responses. EXPERIMENTAL DESIGN: We demonstrate that entinostat, a class I histone deacetylase inhibitor, enhances the antitumor efficacy of the IL15 superagonist N-803 plus vaccine in 4T1 triple-negative breast and MC38-CEA colon murine carcinoma models. A comprehensive immune and gene-expression analysis was performed in the periphery and/or TME of MC38-CEA tumor-bearing mice. RESULTS: Although N-803 plus vaccine induced peripheral CD8+ T-cell activation and cytokine production, there was no reduction in tumor burden and poor tumor infiltration of CD8+ T cells with minimal levels of granzyme B. For the first time, we demonstrate that the addition of entinostat to N-803 plus vaccine promoted significant tumor control, correlating with increased expression of genes associated with tumor inflammation, enhanced infiltration of activated CD8+ T cells with maximal granzyme B, T-cell responses to multiple tumor-associated antigens, increased serum IFNγ, reduction of regulatory T cells in the TME, and decreased expression of the checkpoint V-domain Ig suppressor of T-cell activation (VISTA) on multiple immune subsets. CONCLUSIONS: Collectively, these data demonstrate that the synergistic combination of entinostat, N-803, and vaccine elicits potent antitumor activity by generating a more inflamed TME. These findings thus form the rationale for the use of this combination of agents for patients harboring poorly or noninflamed solid carcinomas.


Assuntos
Benzamidas/farmacologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/tratamento farmacológico , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Interleucina-15/agonistas , Piridinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Quimioterapia Combinada , Feminino , Humanos , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral , Células Tumorais Cultivadas , Microambiente Tumoral
4.
Cancer Immunol Res ; 7(8): 1359-1370, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31292145

RESUMO

Progressive tumor growth is associated with deficits in the immunity generated against tumor antigens. Vaccines targeting tumor neoepitopes have the potential to address qualitative defects; however, additional mechanisms of immune failure may underlie tumor progression. In such cases, patients would benefit from additional immune-oncology agents targeting potential mechanisms of immune failure. This study explores the identification of neoepitopes in the MC38 colon carcinoma model by comparison of tumor to normal DNA and tumor RNA sequencing technology, as well as neoepitope delivery by both peptide- and adenovirus-based vaccination strategies. To improve antitumor efficacies, we combined the vaccine with a group of rationally selected immune-oncology agents. We utilized an IL15 superagonist to enhance the development of antigen-specific immunity initiated by the neoepitope vaccine, PD-L1 blockade to reduce tumor immunosuppression, and a tumor-targeted IL12 molecule to facilitate T-cell function within the tumor microenvironment. Analysis of tumor-infiltrating leukocytes demonstrated this multifaceted treatment regimen was required to promote the influx of CD8+ T cells and enhance the expression of transcripts relating to T-cell activation/effector function. Tumor-targeted IL12 resulted in a marked increase in clonality of T-cell repertoire infiltrating the tumor, which when sculpted with the addition of either a peptide or adenoviral neoepitope vaccine promoted efficient tumor clearance. In addition, the neoepitope vaccine induced the spread of immunity to neoepitopes expressed by the tumor but not contained within the vaccine. These results demonstrate the importance of combining neoepitope-targeting vaccines with a multifaceted treatment regimen to generate effective antitumor immunity.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Epitopos/imunologia , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Resultado do Tratamento , Carga Tumoral , Vacinação
5.
Nano Lett ; 17(7): 4019-4028, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28650644

RESUMO

Immunotherapeutics are gaining more traction in the armamentarium used to combat cancer. Specifically, in situ vaccination strategies have gained interest because of their ability to alter the tumor microenvironment to an antitumor state. Herein, we investigate whether flexuous plant virus-based nanoparticles formed by the potato virus X (PVX) can be used as an immunotherapeutic for in situ vaccine monotherapy. We further developed dual chemo-immunotherapeutics by incorporating doxorubicin (DOX) into PVX yielding a dual-functional nanoparticle (PVX-DOX) or by coadministration of the two therapeutic regimes, PVX immunotherapy and DOX chemotherapy (PVX+DOX). In the context of B16F10 melanoma, PVX was able to elicit delayed tumor progression when administered as an intratumoral in situ vaccine. Furthermore, the coadministration of DOX via PVX+DOX enhanced the response of the PVX monotherapy through increased survival, which was also represented in the enhanced antitumor cytokine/chemokine profile stimulated by PVX+DOX when compared to PVX or DOX alone. Importantly, coadministered PVX+DOX was better for in situ vaccination than PVX loaded with DOX (PVX-DOX). Whereas the nanomedicine field strives to design multifunctional nanoparticles that integrate several functions and therapeutic regimens into a single nanoparticle, our data suggest a paradigm shift; some therapeutics may need to be administered separately to synergize and achieve the most potent therapeutic outcome. Altogether, our studies show that development of plant viral nanoparticles for in situ vaccines for treatment is a possibility, and dual mechanistic therapeutics can increase efficacy. Nonetheless, combining immunotherapeutics with cytolytic chemotherapy requires detailed investigation to inform optimal integration of cytolytic and immunotherapies and maximize synergy and efficacy.


Assuntos
Antineoplásicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas/química , Potexvirus/imunologia , Animais , Antineoplásicos/química , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Imunoterapia/métodos , Injeções Intralesionais , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Potexvirus/química , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia
6.
Nanoscale ; 9(6): 2348-2357, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28144662

RESUMO

Plant viral nanoparticles (VNPs) are a novel class of nanocarriers with implications for drug delivery in cancer therapy. VNPs are characterized by their highly symmetrical nanoscale structures. Furthermore, plant VNPs are biocompatible, biodegradable, and non-infectious in mammals. VNPs provide a proteinaceous platform technology that can be readily engineered to carry contrast agents and therapies using chemical and genetic modifications. Of particular interest are high aspect ratio, elongated filaments such as the ones formed by potato virus X (PVX, measuring 515 × 13 nm). PVX has demonstrated enhanced tumor homing and penetration properties compared to spherical counterparts. Here, we sought to investigate the potential of PVX as a drug carrier delivering doxorubicin (DOX), a commonly used cancer chemotherapy. We synthesized therapeutic PVX nanoparticles using a simple in-solution mixing protocol; after 5 days of mixing of DOX and PVX and ultra-centrifugal purification, ∼1000 DOX per PVX were stably associated with the carrier, most likely based on hydrophobic interaction. Efficacy and drug activity of PVX-DOX were confirmed using a panel of cancer cell lines including ovarian cancer, breast cancer, and cervical cancer. Lastly, we demonstrated treatment of athymic mice bearing human MDA-MB-231 breast cancer xenografts: PVX-DOX treatment resulted in reduced tumor growth in this model. Our results open the door for further development of PVX and other high aspect ratio plant VNPs for applications in cancer therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Nanopartículas , Potexvirus , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Phys Chem B ; 120(26): 6120-9, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27045770

RESUMO

Nanoparticle-based technologies, including platforms derived from plant viruses, hold great promise for targeting and delivering cancer therapeutics to solid tumors by overcoming dose-limiting toxicities associated with chemotherapies. A growing body of data indicates advantageous margination and penetration properties of high aspect-ratio nanoparticles, which enhance payload delivery, resulting in increased efficacy. Our lab has demonstrated that elongated rod-shaped and filamentous macromolecular nucleoprotein assemblies from plant viruses have higher tissue diffusion rates than spherical particles. In this study, we developed a mathematical model to quantify diffusion and uptake of tobacco mosaic virus (TMV) in a spheroid system approximating a capillary-free segment of a solid tumor. Model simulations predict TMV concentration distribution with time in a tumor spheroid for different sizes and cell densities. From simulations of TMV concentration distribution, we can quantify the effect of TMV aspect ratio (e.g., nanorod length-to-width) with and without cellular uptake by modulated surface chemistry. This theoretical analysis can be applied to other viral or nonviral delivery systems to complement the experimental development of the next generation of nanotherapeutics.


Assuntos
Transporte Biológico , Portadores de Fármacos/metabolismo , Nanotubos , Neoplasias/metabolismo , Neoplasias/terapia , Vírus do Mosaico do Tabaco/metabolismo , Contagem de Células , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Simulação por Computador , Difusão , Humanos , Modelos Biológicos , Propriedades de Superfície , Distribuição Tecidual
8.
Bioconjug Chem ; 27(5): 1227-35, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27077475

RESUMO

Photodynamic therapy (PDT) is a promising avenue for greater treatment efficacy of highly resistant and aggressive melanoma. Through photosensitizer attachment to nanoparticles, specificity of delivery can be conferred to further reduce potential side effects. While the main focus of PDT is the destruction of cancer cells, additional targeting of tumor-associated macrophages also present in the tumor microenvironment could further enhance treatment by eliminating their role in processes such as invasion, metastasis, and immunosuppression. In this study, we investigated PDT of macrophages and tumor cells through delivery using the natural noninfectious nanoparticle cowpea mosaic virus (CPMV), which has been shown to have specificity for the immunosuppressive subpopulation of macrophages and also targets cancer cells. We further explored conjugation of CPMV/dendron hybrids in order to improve the drug loading capacity of the nanocarrier. Overall, we demonstrated effective elimination of both macrophage and tumor cells at low micromolar concentrations of the photosensitizer when delivered with the CPMV bioconjugate, thereby potentially improving melanoma treatment.


Assuntos
Comovirus/química , Dendrímeros/química , Macrófagos/metabolismo , Melanoma Experimental/patologia , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/metabolismo , Animais , Portadores de Fármacos/química , Camundongos , Fármacos Fotossensibilizantes/química , Células RAW 264.7
9.
Artigo em Inglês | MEDLINE | ID: mdl-26782096

RESUMO

Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas , Vacinas , Vírion , Animais , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Vacinação , Vírion/química , Vírion/ultraestrutura
10.
ACS Biomater Sci Eng ; 2(5): 838-844, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28713855

RESUMO

Melanoma is a highly aggressive cancer that is unresponsive to many traditional therapies. Recently, photodynamic therapy has shown promise in its treatment as an adjuvant therapy. However, conventional photosensitizers are limited by poor solubility and limited accumulation within target tissue. Here, we report the delivery of a porphyrin-based photosensitizer encapsulated within a plant viral nanoparticle. Specifically, we make use of the hollow, high aspect ratio nanotubes formed by the nucleoprotein components of tobacco mosaic virus (TMV) to encapsulate the drug for delivery and targeting of cancer cells. The cationic photosensitizer was successfully and stably loaded into the interior channel of TMV via electrostatic interactions. Cell uptake and efficacy were evaluated using a model of melanoma. The resulting TMV-photosensitizer exhibited improved cell uptake and efficacy when compared to free photosensitizer, making it a promising platform for improved therapy of melanoma.

11.
J Mater Chem B ; 3(29): 6037-6045, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26509036

RESUMO

Arterial and venous thrombosis are among the most common causes of death and hospitalization worldwide. Nanotechnology approaches hold great promise for molecular imaging and diagnosis as well as tissue-targeted delivery of therapeutics. In this study, we developed and investigated bioengineered nanoprobes for identifying thrombus formation; the design parameters of nanoparticle shape and surface chemistry, i.e. incorporation of fibrin-binding peptides CREKA and GPRPP, were investigated. Two nanoparticle platforms based on plant viruses were studied - icosahedral cowpea mosaic virus (CPMV) and elongated rod-shaped tobacco mosaic virus (TMV). These particles were loaded to carry contrast agents for dual-modality magnetic resonance (MR) and optical imaging, and both modalities demonstrated specificity of fibrin binding in vitro with the presence of targeting peptides. Preclinical studies in a carotid artery photochemical injury model of thrombosis confirmed thrombus homing of the nanoprobes, with the elongated TMV rods exhibiting significantly greater attachment to thrombi than icosahedral (sphere-like) CPMV. While in vitro studies confirmed fibrin-specificity conferred by the peptide ligands, in vivo studies indicated the nanoparticle shape had the greatest contribution toward thrombus targeting, with no significant contribution from either targeting ligand. These results demonstrate that nanoparticle shape plays a critical role in particle deposition at the site of vascular injury. Shaping nanotechnologies opens the door for the development of novel targeted diagnostic and therapeutic strategies (i.e., theranostics) for arterial and venous thrombosis.

12.
Acta Biomater ; 19: 166-79, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25769228

RESUMO

Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature's materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show reduced interaction with cells of the MPS; the protein:polymer hybrids are cleared from the body tissues within hours to days indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine.


Assuntos
Nanocápsulas/química , Nanocápsulas/ultraestrutura , Polietilenoglicóis/química , Potexvirus/fisiologia , Teste de Materiais , Conformação Molecular , Peso Molecular , Potexvirus/química , Potexvirus/ultraestrutura
13.
Bioconjug Chem ; 26(2): 262-269, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25611133

RESUMO

Molecular imaging approaches and targeted drug delivery hold promise for earlier detection of diseases and treatment with higher efficacy while reducing side effects, therefore increasing survival rates and quality of life. Virus-based nanoparticles are a promising platform because their scaffold can be manipulated both genetically and chemically to simultaneously display targeting ligands while carrying payloads for diagnosis or therapeutic intervention. Here, we displayed a 12-amino-acid peptide ligand, GE11 (YHWYGYTPQNVI), on nanoscale filaments formed by the plant virus potato virus X (PVX). Bioconjugation was used to produce fluorescently labeled PVX-GE11 filaments targeted toward the epidermal growth factor receptor (EGFR). Cell detection and imaging was demonstrated using human skin epidermoid carcinoma, colorectal adenocarcinoma, and triple negative breast cancer cell lines (A-431, HT-29, MDA-MB-231), all of which upregulate EGFR to various degrees. Nonspecific uptake in ductal breast carcinoma (BT-474) cells was not observed. Furthermore, co-culture experiments with EGFR(+) cancer cells and macrophages indicate successful targeting and partitioning toward the cancer cells. This study lays a foundation for the development of EGFR-targeted filaments delivering contrast agents for imaging and diagnosis, and/or toxic payloads for targeted drug delivery.


Assuntos
Receptores ErbB/metabolismo , Nanopartículas , Neoplasias/diagnóstico , Peptídeos , Vírus de Plantas/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Diagnóstico por Imagem , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/química , Peptídeos/metabolismo , Vírus de Plantas/metabolismo
14.
Adv Healthc Mater ; 4(3): 460-8, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25336437

RESUMO

Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.


Assuntos
Técnicas de Ablação/métodos , Nanodiamantes/química , Materiais Biocompatíveis/farmacocinética , Carbocianinas/química , Ouro/química , Células HeLa/efeitos dos fármacos , Humanos , Hipertermia Induzida/métodos , Terapia a Laser/métodos , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Nanoconchas/química , Polietilenoglicóis/química , Receptores da Transferrina/metabolismo , Transferrina/química , Transferrina/farmacologia
15.
Methods Mol Biol ; 1108: 3-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24243237

RESUMO

Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).


Assuntos
Engenharia Genética/métodos , Potexvirus/química , Potexvirus/genética , Proteínas do Capsídeo/química , Química Click/métodos , Vírion/química , Vírion/genética , Vírion/isolamento & purificação
16.
Biomater Sci ; 1(6)2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24244867

RESUMO

Nanomaterial-based carrier systems hold great promise to deliver therapies with increased efficacy and reduced side effects. While the state-of-the-art carrier system is a sphere, recent data indicate that elongated rods and filaments have advantageous flow and margination properties, resulting in enhanced vascular targeting and tumor homing. Here, we report on the distinct diffusion rates of two bio-inspired carrier systems: 30 nm-sized spherical cowpea mosaic virus (CPMV) and 300×18 nm-sized tobacco mosaic virus (TMV) with a tubular structure, using a spheroid model of the tumor microenvironment and fluorescent imaging.

17.
J Control Release ; 172(2): 568-78, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23665254

RESUMO

This work is focused on the development of a plant virus-based carrier system for cargo delivery, specifically 30nm-sized cowpea mosaic virus (CPMV). Whereas previous reports described the engineering of CPMV through genetic or chemical modification, we report a non-covalent infusion technique that facilitates efficient cargo loading. Infusion and retention of 130-155 fluorescent dye molecules per CPMV using DAPI (4',6-diamidino-2-phenylindole dihydrochloride), propidium iodide (3,8-diamino-5-[3-(diethylmethylammonio)propyl]-6-phenylphenanthridinium diiodide), and acridine orange (3,6-bis(dimethylamino)acridinium chloride), as well as 140 copies of therapeutic payload proflavine (PF, acridine-3,6-diamine hydrochloride), is reported. Loading is achieved through interaction of the cargo with the CPMV's encapsidated RNA molecules. The loading mechanism is specific; empty RNA-free eCPMV nanoparticles could not be loaded. Cargo-infused CPMV nanoparticles remain chemically active, and surface lysine residues were covalent modified with dyes leading to the development of dual-functional CPMV carrier systems. We demonstrate cargo-delivery to a panel of cancer cells (cervical, breast, and colon): CPMV nanoparticles enter cells via the surface marker vimentin, the nanoparticles target the endolysosome, where the carrier is degraded and the cargo is released allowing imaging and/or cell killing. In conclusion, we demonstrate cargo-infusion and delivery to cells; the methods discussed provide a useful means for functionalization of CPMV toward its application as drug and/or contrast agent delivery vehicle.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Comovirus/metabolismo , Portadores de Fármacos/metabolismo , Corantes Fluorescentes/administração & dosagem , Nanopartículas/metabolismo , Proflavina/administração & dosagem , Laranja de Acridina/administração & dosagem , Linhagem Celular Tumoral , Endossomos/metabolismo , Humanos , Indóis/administração & dosagem , Pisum sativum/virologia , Propídio/administração & dosagem
18.
Mol Pharm ; 10(1): 33-42, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22731633

RESUMO

Nanomaterials with elongated architectures have been shown to possess differential tumor homing properties compared to their spherical counterparts. Here, we investigate whether this phenomenon is mirrored by plant viral nanoparticles that are filamentous (Potato virus X) or spherical (Cowpea mosaic virus). Our studies demonstrate that Potato virus X (PVX) and Cowpea mosaic virus (CPMV) show distinct biodistribution profiles and differ in their tumor homing and penetration efficiency. Analogous to what is seen with inorganic nanomaterials, PVX shows enhanced tumor homing and tissue penetration. Human tumor xenografts exhibit higher uptake of PEGylated filamentous PVX compared to CPMV, particularly in the core of the tumor. This is supported by immunohistochemical analysis of the tumor sections, which indicates greater penetration and accumulation of PVX within the tumor tissues. The enhanced tumor homing and retention properties of PVX along with its higher payload carrying capacity make it a potentially superior platform for applications in cancer drug delivery and imaging applications.


Assuntos
Comovirus/metabolismo , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/virologia , Potexvirus/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Embrião de Galinha , Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Terapia Viral Oncolítica/métodos , Plantas/virologia , Polietilenoglicóis/administração & dosagem , Distribuição Tecidual
19.
J Vis Exp ; (69): e4352, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23183850

RESUMO

The use of nanomaterials has the potential to revolutionize materials science and medicine. Currently, a number of different nanoparticles are being investigated for applications in imaging and therapy. Viral nanoparticles (VNPs) derived from plants can be regarded as self-assembled bionanomaterials with defined sizes and shapes. Plant viruses under investigation in the Steinmetz lab include icosahedral particles formed by Cowpea mosaic virus (CPMV) and Brome mosaic virus (BMV), both of which are 30 nm in diameter. We are also developing rod-shaped and filamentous structures derived from the following plant viruses: Tobacco mosaic virus (TMV), which forms rigid rods with dimensions of 300 nm by 18 nm, and Potato virus X (PVX), which form filamentous particles 515 nm in length and 13 nm in width (the reader is referred to refs. (1) and (2) for further information on VNPs). From a materials scientist's point of view, VNPs are attractive building blocks for several reasons: the particles are monodisperse, can be produced with ease on large scale in planta, are exceptionally stable, and biocompatible. Also, VNPs are "programmable" units, which can be specifically engineered using genetic modification or chemical bioconjugation methods. The structure of VNPs is known to atomic resolution, and modifications can be carried out with spatial precision at the atomic level, a level of control that cannot be achieved using synthetic nanomaterials with current state-of-the-art technologies. In this paper, we describe the propagation of CPMV, PVX, TMV, and BMV in Vigna ungiuculata and Nicotiana benthamiana plants. Extraction and purification protocols for each VNP are given. Methods for characterization of purified and chemically-labeled VNPs are described. In this study, we focus on chemical labeling of VNPs with fluorophores (e.g. Alexa Fluor 647) and polyethylene glycol (PEG). The dyes facilitate tracking and detection of the VNPs, and PEG reduces immunogenicity of the proteinaceous nanoparticles while enhancing their pharmacokinetics. We demonstrate tumor homing of PEGylated VNPs using a mouse xenograft tumor model. A combination of fluorescence imaging of tissues ex vivo using Maestro Imaging System, fluorescence quantification in homogenized tissues, and confocal microscopy is used to study biodistribution. VNPs are cleared via the reticuloendothelial system (RES); tumor homing is achieved passively via the enhanced permeability and retention (EPR) effect. The VNP nanotechnology is a powerful plug-and-play technology to image and treat sites of disease in vivo. We are further developing VNPs to carry drug cargos and clinically-relevant imaging moieties, as well as tissue-specific ligands to target molecular receptors overexpressed in cancer and cardiovascular disease.


Assuntos
Neoplasias do Colo/virologia , Nanopartículas/química , Vírus de Plantas/química , Animais , Bromovirus/química , Bromovirus/crescimento & desenvolvimento , Neoplasias do Colo/patologia , Comovirus/química , Comovirus/crescimento & desenvolvimento , Fabaceae/virologia , Células HT29 , Humanos , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/metabolismo , Potexvirus/química , Potexvirus/crescimento & desenvolvimento , Espectrofotometria Ultravioleta , Nicotiana/virologia , Vírus do Mosaico do Tabaco/química , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...