Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Biotechnol Prog ; : e3466, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607316

RESUMO

Monoclonal antibodies (mAbs) are often engineered at the sequence level for improved clinical performance yet are rarely evaluated prior to candidate selection for their "developability" characteristics, namely expression, which can necessitate additional resource investments to improve the manufacturing processes for problematic mAbs. A strong relationship between primary sequence and expression has emerged, with slight differences in amino acid sequence resulting in titers differing by up to an order of magnitude. Previous work on these "difficult-to-express" (DTE) mAbs has shown that these phenotypes are driven by post-translational bottlenecks in antibody folding, assembly, and secretion processes. However, it has been difficult to translate these findings across cell lines and products. This work presents a systematic approach to study the impact of sequence variation on mAb expression at a larger scale and under more industrially relevant conditions. The analysis found 91 mutations that decreased transient expression of an IgG1κ in Chinese hamster ovary (CHO) cells and revealed that mutations at inaccessible residues, especially those leading to decreases in residue hydrophobicity, are not favorable for high expression. This workflow can be used to better understand sequence determinants of mAb expression to improve candidate selection procedures and reduce process development timelines.

2.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38562904

RESUMO

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

3.
NPJ Genom Med ; 9(1): 22, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531898

RESUMO

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

5.
NEJM Evid ; 3(2): EVIDoa2300286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320489

RESUMO

Dapagliflozin in Myocardial InfarctionA total of 4017 patients with acute myocardial infarction, but no diabetes or chronic heart failure, were randomly assigned 10 mg of dapagliflozin or placebo. The primary outcome was a composite of death, hospitalization for heart failure, and five cardiometabolic outcomes analyzed using the win ratio method. There were significantly more wins for dapagliflozin than for placebo (win ratio, 1.34; 95% confidence interval, 1.20 to 1.50), which was driven by the cardiometabolic outcomes. The composite of time to cardiovascular death/hospitalization for heart failure was not different between the two groups.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Insuficiência Cardíaca , Infarto do Miocárdio , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico
6.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240126

RESUMO

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Cromatografia em Gel , Proteína Estafilocócica A/química
7.
Cell Mol Immunol ; 21(3): 260-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233562

RESUMO

Metabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.


Assuntos
Processamento Alternativo , Antígenos CD28 , Antígenos CD28/metabolismo , Processamento Alternativo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T CD8-Positivos , Glucose/metabolismo
8.
Biotechnol J ; 19(1): e2300425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37970758

RESUMO

Chinese hamster ovary (CHO) cells are essential to biopharmaceutical manufacturing and production instability, the loss of productivity over time, is a long-standing challenge in the industry. Accurate prediction of cell line stability could enable efficient screening to identify clones suitable for manufacturing saving significant time and costs. DNA repair genes may offer biomarkers to address this need. In this study, over 40 cell lines representing various host lineages from three companies/organizations were evaluated for expression of five DNA repair genes (Fam35a, Lig4, Palb2, Pari, and Xrcc6). Expression measured in cells with less than 30 population doubling levels (PDLs) was correlated to stability profiles at 60+ PDL. Principal component analysis identified markers which separate stable and unstable CHO-DG44 cell lines. Notably, two genes, Lig4 and Xrcc6, showed higher expression in unstable CHO-DG44 cell lines with copy number loss identified as the mechanism of production instability. Expression levels across all cell ages showed lower DNA repair gene expression was associated with increased cell age. Collectively, DNA repair genes provide critical insight into long-term behavior of CHO cells and their expression levels have potential to predict cell line stability in certain cases.


Assuntos
Reparo do DNA , Cricetinae , Animais , Cricetulus , Células CHO , Células Clonais , Reparo do DNA/genética
9.
Biotechnol Bioeng ; 121(1): 291-305, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877536

RESUMO

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.


Assuntos
Anticorpos Monoclonais , Cricetinae , Animais , Humanos , Anticorpos Monoclonais/química , Reprodutibilidade dos Testes , Cricetulus , Espectrometria de Massas , Células CHO
10.
J Immunol ; 212(3): 475-486, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117752

RESUMO

Macrophages represent the most abundant immune component of the tumor microenvironment and often exhibit protumorigenic (M2-like) phenotypes that contribute to disease progression. Despite their generally accepted protumorigenic role, macrophages can also display tumoricidal (or M1-like) behavior, revealing that macrophages can be functionally reprogrammed, depending on the cues received within the tumor microenvironment. Moreover, such plasticity may be achieved by pharmacologic or biologic interventions. To that end, we previously demonstrated that a novel immunomodulator termed the "very small size particle" (VSSP) facilitates maturation of dendritic cells and differentiation of myeloid-derived suppressor cells to APCs with reduced suppressive activity in cancer models. VSSP was further shown to act in the bone marrow to drive the differentiation of progenitors toward monocytes, macrophages, and dendritic cells during emergency myelopoiesis. However, the underlying mechanisms for VSSP-driven alterations in myeloid differentiation and function remained unclear. In this study, in mouse models, we focused on macrophages and tested the hypothesis that VSSP drives macrophages toward M1-like functional states via IRF8- and PU.1-dependent mechanisms. We further hypothesized that such VSSP-mediated actions would be accompanied by enhanced antitumor responses. Overall, we showed that (1) VSSP drives naive or M2-derived macrophages to M1-like states, (2) the M1-like state induced by VSSP occurs via IRF8- and PU.1-dependent mechanisms, and (3) single-agent VSSP induces an antitumor response that is accompanied by alterations in the intratumoral myeloid compartment. These results provide a deeper mechanistic underpinning of VSSP and strengthen its use to drive M1-like responses in host defense, including cancer.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Gangliosídeos , Macrófagos , Neoplasias/patologia , Fenótipo , Fatores Reguladores de Interferon , Microambiente Tumoral
12.
Blood Cancer J ; 13(1): 144, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696786

RESUMO

Biallelic TP53 inactivation is the most important high-risk factor associated with poor survival in multiple myeloma. Classical biallelic TP53 inactivation has been defined as simultaneous mutation and copy number loss in most studies; however, numerous studies have demonstrated that other factors could lead to the inactivation of TP53. Here, we hypothesized that novel biallelic TP53 inactivated samples existed in the multiple myeloma population. A random forest regression model that exploited an expression signature of 16 differentially expressed genes between classical biallelic TP53 and TP53 wild-type samples was subsequently established and used to identify novel biallelic TP53 samples from monoallelic TP53 groups. The model reflected high accuracy and robust performance in newly diagnosed relapsed and refractory populations. Patient survival of classical and novel biallelic TP53 samples was consistently much worse than those with mono-allelic or wild-type TP53 status. We also demonstrated that some predicted biallelic TP53 samples simultaneously had copy number loss and aberrant splicing, resulting in overexpression of high-risk transcript variants, leading to biallelic inactivation. We discovered that splice site mutation and overexpression of the splicing factor MED18 were reasons for aberrant splicing. Taken together, our study unveiled the complex transcriptome of TP53, some of which might benefit future studies targeting abnormal TP53.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Alelos , Mutação , Fatores de Processamento de RNA , Algoritmo Florestas Aleatórias , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição
13.
Res Sq ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398341

RESUMO

miR-31 is a highly conserved microRNA that plays critical roles in cell proliferation, migration, and differentiation. We discovered miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeleton and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, ß-actin, Gelsolin, Rab35 and Fascin, which were localized to the mitotic spindle. miR-31 inhibition leads to increased newly translated Fascin at the spindles. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, leading to our hypothesis that miR-31 regulates local translation at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.

14.
Biotechnol Bioeng ; 120(11): 3148-3162, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475681

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost-effective, well-characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two-dimensional vector genome titer ratio). A regression model was established for each PQA using partial least squares, and a design space (DS) was defined in which Monte Carlo simulations predicted < 1% probability of failure (POF) to meet predetermined PQA specifications. Of the three PQAs, viral genome titer was most strongly correlated with changes in complexation PPs. The DS and acceptable PP ranges were largest when incubation time and cocktail volume were kept at mid-high setpoints, and PEI:DNA ratio and total DNA/cell were at low-mid setpoints. Verification experiments confirmed model predictive capability, and this work establishes a framework for studying other rAAV PPs and their relationship to PQAs.

15.
J Chromatogr A ; 1702: 464081, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37244165

RESUMO

Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.


Assuntos
Cromatografia , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Ânions
16.
Biotechnol Bioeng ; 120(9): 2419-2440, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37039773

RESUMO

Efforts to leverage clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) for targeted genomic modifications in mammalian cells are limited by low efficiencies and heterogeneous outcomes. To aid method optimization, we developed an all-in-one reporter system, including a novel superfolder orange fluorescent protein (sfOrange), to simultaneously quantify gene disruption, site-specific integration (SSI), and random integration (RI). SSI strategies that utilize different donor plasmid formats and Cas9 nuclease variants were evaluated for targeting accuracy and efficiency in Chinese hamster ovary cells. Double-cut and double-nick donor formats significantly improved targeting accuracy by 2.3-8.3-fold and 19-22-fold, respectively, compared to standard circular donors. Notably, Cas9-mediated donor linearization was associated with increased RI events, whereas donor nicking minimized RI without sacrificing SSI efficiency and avoided low-fidelity outcomes. A screen of 10 molecules that modulate the major mammalian DNA repair pathways identified two inhibitors that further enhance targeting accuracy and efficiency to achieve SSI in 25% of transfected cells without selection. The optimized methods integrated transgene expression cassettes with 96% efficiency at a single locus and with 53%-55% efficiency at two loci simultaneously in selected clones. The CRISPR-based tools and methods developed here could inform the use of CRISPR/Cas9 in mammalian cell lines, accelerate mammalian cell line engineering, and support advanced recombinant protein production applications.


Assuntos
Proteína 9 Associada à CRISPR , Reparo do DNA , Cricetinae , Animais , Células CHO , Cricetulus , Reparo do DNA/genética , Proteína 9 Associada à CRISPR/genética , Proteínas Recombinantes/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos
17.
Biotechnol Bioeng ; 120(9): 2765-2770, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37053004

RESUMO

The challenge of introducing new technologies into established industries is not a problem unique to the biopharmaceutical industry. However, it may be critical to the long-term competitiveness of individual manufacturers and, more importantly, the ability to deliver therapies to patients. This is especially true for new treatment modalities including cell and gene therapies. We review several barriers to technology adoption which have been identified in various public forums including business, regulatory, technology, and people-driven concerns. We also summarize suitable enablers addressing one or more of these barriers along with suggestions for developing synergies or connections between innovation in product discovery and manufacturing or across the supplier, discovery, manufacturing, and regulatory arms of the holistic innovation engine.


Assuntos
Produtos Biológicos , Indústria Farmacêutica , Humanos , Tecnologia
18.
Biotechnol Bioeng ; 120(8): 2133-2143, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014810

RESUMO

The use of targeted integration for industrial CHO cell line development currently requires significant upfront effort to identify genomic loci capable of supporting multigram per liter therapeutic protein production from a limited number of transgene copies. To address this barrier to widespread adoption, we characterized transgene expression from thousands of stable hotspots in the CHO genome using the Thousands of Reporters Integrated in Parallel high-throughput screening method. This genome-scale data set was used to define a limited set of epigenetic properties of hotspot regions with sizes on the order of 10 kb. Cell lines with landing pad integrations at eight retargeted hotspot candidates consistently exhibited higher transgene mRNA expression than a commercially viable hotspot in equivalent culture conditions. Initial benchmarking of NISTmAb and trastuzumab productivity from one of these hotspots yielded mAb productivities of approximately 0.7-2 g/L (qP range: 2.9-8.2 pg/cell/day) in small-scale fed-batches. These findings indicate the list of hotspot candidates identified here will be a valuable resource for targeted integration platform development within the CHO community.


Assuntos
Genoma , Cricetinae , Animais , Genoma/genética , Cricetulus , Células CHO
19.
Biotechnol Prog ; 39(4): e3343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020359

RESUMO

Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Anticorpos Monoclonais/química , Cricetulus , Proteômica/métodos , Células CHO , Cromatografia Líquida/métodos , Proteína Estafilocócica A/química
20.
Commun Biol ; 6(1): 449, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095203

RESUMO

Complex and irregular cell architecture is known to statistically exhibit fractal geometry, i.e., a pattern resembles a smaller part of itself. Although fractal variations in cells are proven to be closely associated with the disease-related phenotypes that are otherwise obscured in the standard cell-based assays, fractal analysis with single-cell precision remains largely unexplored. To close this gap, here we develop an image-based approach that quantifies a multitude of single-cell biophysical fractal-related properties at subcellular resolution. Taking together with its high-throughput single-cell imaging performance (~10,000 cells/sec), this technique, termed single-cell biophysical fractometry, offers sufficient statistical power for delineating the cellular heterogeneity, in the context of lung-cancer cell subtype classification, drug response assays and cell-cycle progression tracking. Further correlative fractal analysis shows that single-cell biophysical fractometry can enrich the standard morphological profiling depth and spearhead systematic fractal analysis of how cell morphology encodes cellular health and pathological conditions.


Assuntos
Neoplasias Pulmonares , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...