Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plants (Basel) ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570953

RESUMO

Efficient genetic transformation is a prerequisite for rapid gene functional analyses and crop trait improvements. We recently demonstrated that new T-DNA binary vectors with NptII/G418 selection and a compatible helper plasmid can efficiently transform maize inbred B104 using our rapid Agrobacterium-mediated transformation method. In this work, we implemented the non-integrating Wuschel2 (Wus2) T-DNA vector method for Agrobacterium-mediated B104 transformation and tested its potential for recalcitrant inbred B73 transformation and gene editing. The non-integrating Wus2 (NIW) T-DNA vector-assisted transformation method uses two Agrobacterium strains: one carrying a gene-of-interest (GOI) construct and the other providing an NIW construct. To monitor Wus2 co-integration into the maize genome, we combined the maize Wus2 expression cassette driven by a strong constitutive promoter with a new visible marker RUBY, which produces the purple pigment betalain. As a GOI construct, we used a previously tested CRISPR-Cas9 construct pKL2359 for Glossy2 gene mutagenesis. When both GOI and NIW constructs were delivered by LBA4404Thy- strain, B104 transformation frequency was significantly enhanced by about two-fold (10% vs. 18.8%). Importantly, we were able to transform a recalcitrant inbred B73 using the NIW-assisted transformation method and obtained three transgene-free edited plants by omitting the selection agent G418. These results suggest that NIW-assisted transformation can improve maize B104 transformation frequency and provide a novel option for CRISPR technology for transgene-free genome editing.

4.
Curr Opin Biotechnol ; 79: 102848, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463838

RESUMO

Recent advances in the genome-editing tools have demonstrated a great potential for accelerating functional genomics and crop trait improvements, but the low efficiency and genotype dependence in plant transformation hinder practical applications of such revolutionary tools. Morphogenic transcription factors (MTFs) such as Baby boom, Wuschel2, GROWTH-REGULATING FACTOR5, GROWTH-REGULATING FACTOR4 and its cofactor GRF-INTERACTING FACTOR1, and Wuschel-homeobox 5 related have been shown to greatly enhance plant transformation efficiency and expand the range of amenable species and genotypes. This review will summarize recent advancements in plant transformation technologies with an emphasis on the strategies developed for genotype-flexible transformation methods utilizing MTFs for both monocots and dicot plant species. We highlight several breakthrough studies that demonstrated a wide range of applicability.


Assuntos
Edição de Genes , Genômica , Plantas Geneticamente Modificadas/genética , Genômica/métodos , Produtos Agrícolas/genética , Fatores de Transcrição/genética , Genótipo , Genoma de Planta , Melhoramento Vegetal
5.
ACS Appl Bio Mater ; 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191156

RESUMO

Biolistic transfection is a popular and versatile tool for plant transformation. A key step in the biolistic process is the binding of DNA to the heavy microprojectile using a delivery agent, usually a positively charged molecule containing amine groups. Currently, the choice of the commercial delivery agent is mostly limited to spermidine. In addition, the detailed delivery mechanism has not been reported. To help broaden the selection of the delivery agent and reveal the fundamental mechanisms that lead to high delivery performance, a library of amine-containing molecules was investigated. A double-barrel biolistic delivery device was utilized for testing hundreds of samples with much-improved consistency. The performance was evaluated on onion epidermis. The binding and release of DNA were measured via direct high-performance liquid chromatography analysis. This study shows that the overwhelming majority of the amine library performed at the same level as spermidine. To further interpret these results, correlations were performed with thousands of molecular descriptors generated by chemical modeling. It was discovered that the overall charge is most likely the key factor to a successful binding and delivery. Furthermore, even after increasing the amount of the DNA concentration 50-fold to stress the binding capacity of the molecules, the amines in the library continued to deliver at a near identical level while binding all the DNA. The increased DNA was also demonstrated with a Cas9 editing test that required a large amount of DNA to be delivered, and the result was consistent with the previously determined amine performance. This study greatly expands the delivery agent selection for biolistic delivery, allowing alternatives to a commercial reagent that are more shelf-stable and cheaper. The library also offers an approach to investigate more challenging delivery of protein and CRISPR-Cas via the biolistic process in the future.

6.
Plant Biotechnol J ; 20(10): 1916-1927, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690588

RESUMO

Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter-kingdom gene transfer capability made Agrobacterium an essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such as Agrobacterium-host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA-guided integrase system for Agrobacterium genome engineering. In this work, we demonstrate that INsertion of Transposable Elements by Guide RNA-Assisted TargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre-loxP recombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies for Agrobacterium species and their gene functional analyses.


Assuntos
Agrobacterium tumefaciens , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Agrobacterium tumefaciens/genética , Elementos de DNA Transponíveis , DNA Bacteriano , Integrases/genética , RNA , RNA Guia de Cinetoplastídeos
7.
Front Plant Sci ; 13: 860971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599865

RESUMO

For maize genome-editing and bioengineering, genetic transformation of inbred genotypes is most desired due to the uniformity of genetic background in their progenies. However, most maize inbred lines are recalcitrant to tissue culture and transformation. A public, transformable maize inbred B104 has been widely used for genome editing in recent years. This is primarily due to its high degree of genetic similarity shared with B73, an inbred of the reference genome and parent of many breeding populations. Conventional B104 maize transformation protocol requires 16-22 weeks to produce rooted transgenic plants with an average of 4% transformation frequency (number of T0 plants per 100 infected embryos). In this Method paper, we describe an advanced B104 transformation protocol that requires only 7-10 weeks to generate transgenic plants with an average of 6.4% transformation frequency. Over 66% of transgenic plants carried CRISPR/Cas9-induced indel mutations on the target gene, demonstrating that this protocol can be used for genome editing applications. Following the detailed and stepwise procedure described here, this quick and simplified method using the Agrobacterium ternary vector system consisting of a T-DNA binary vector and a compatible helper plasmid can be readily transferable to interested researchers.

8.
Methods Mol Biol ; 2464: 153-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258832

RESUMO

Pennycress (Thlaspi arvense) and camelina (Camelina sativa) are nonfood winter oilseed crops that have the potential to contribute to sustainable biofuel production. However, undesired agronomic traits of pennycress and camelina currently hinder broad cultivation of these plants in the field. Recently, genome editing using the CRISPR-Cas technology has been applied to improve poor agronomic traits such as the weedy phenotype of pennycress and the oxidation susceptible lipid profile of camelina. In these works, the CRISPR reagents were introduced into the plants using the Agrobacterium-mediated floral dipping method. For accelerated domestication and value improvements of these winter oilseed crops, DNA-free genome editing platform and easy evaluation method of the CRISPR-Cas reagents are highly desirable. Cell wall-free protoplasts are great material to expand the use of gene engineering tools. In this chapter, we present a step-by-step guide to the mesophyll protoplast isolation from in vitro culture-grown pennycress and soil-grown camelina. The protocol also includes procedures for DNA transfection and protoplast viability test using fluorescein diacetate. With this protocol, we can isolate an average of 6 × 106 cells from pennycress and 3 × 106 cells from camelina per gram of fresh leaf tissues. Using a 7.3 kb plasmid DNA carrying green and red fluorescent protein marker genes, we can achieve an average transfection rate of 40% validated by flow cytometry for both plants.


Assuntos
Thlaspi , Produtos Agrícolas/genética , DNA/metabolismo , Protoplastos , Thlaspi/genética , Thlaspi/metabolismo , Transfecção
9.
Front Plant Sci ; 12: 773419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956270

RESUMO

Modern maize exhibits a significantly different phenotype than its wild progenitor teosinte despite many genetic similarities. Of the many subspecies of Zea mays identified as teosinte, Zea mays ssp. parviglumis is the most closely related to domesticated maize. Understanding teosinte genes and their regulations can provide great insights into the maize domestication process and facilitate breeding for future crop improvement. However, a protocol of genetic transformation, which is essential for gene functional analyses, is not available in teosinte. In this study, we report the establishment of a robust callus induction and regeneration protocol using whorl segments of seedlings germinated from mature seeds of Zea parviglumis. We also report, for the first time, the production of fertile, transgenic teosinte plants using the particle bombardment. Using herbicide resistance genes such as mutant acetolactate synthase (Als) or bialaphos resistance (bar) as selectable markers, we achieved an average transformation frequency of 4.17% (percentage of independent transgenic events in total bombarded explants that produced callus). Expression of visual marker genes of red fluorescent protein tdTomato and ß-glucuronidase (gus) could be detected in bombarded callus culture and in T1 and T2 progeny plants. The protocol established in this work provides a major enabling technology for research toward the understanding of this important plant in crop domestication.

10.
Sci Rep ; 11(1): 7695, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833247

RESUMO

Biolistic delivery is widely used for genetic transformation but inconsistency between bombardment samples for transient gene expression analysis often hinders quantitative analyses. We developed a methodology to improve the consistency of biolistic delivery results by using a double-barrel device and a cell counting software. The double-barrel device enables a strategy of incorporating an internal control into each sample, which significantly decreases variance of the results. The cell counting software further reduces errors and increases throughput. The utility of this new platform is demonstrated by optimizing conditions for delivering DNA using the commercial transfection reagent TransIT-2020. In addition, the same approach is applied to test the efficacy of multiple gRNAs for CRISPR-Cas9-mediated gene editing. The novel combination of the bombardment device and analysis method allows simultaneous comparison and optimization of parameters in the biolistic delivery. The platform developed here can be broadly applied to any target samples using biolistics, including animal cells and tissues.


Assuntos
Biolística , Sistemas CRISPR-Cas , DNA de Plantas/genética , Plantas/genética , Edição de Genes/métodos
11.
Nat Plants ; 6(6): 600-601, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451450

Assuntos
Cromossomos
12.
Front Genome Ed ; 2: 622227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713243

RESUMO

Maize (Zea mays ssp. mays) is a popular genetic model due to its ease of crossing, well-established toolkits, and its status as a major global food crop. Recent technology developments for precise manipulation of the genome are further impacting both basic biological research and biotechnological application in agriculture. Crop gene editing often requires a process of genetic transformation in which the editing reagents are introduced into plant cells. In maize, this procedure is well-established for a limited number of public lines that are amenable for genetic transformation. Fast-Flowering Mini-Maize (FFMM) lines A and B were recently developed as an open-source tool for maize research by reducing the space requirements and the generation time. Neither line of FFMM were competent for genetic transformation using traditional protocols, a necessity to its status as a complete toolkit for public maize genetic research. Here we report the development of new lines of FFMM that have been bred for amenability to genetic transformation. By hybridizing a transformable maize genotype high Type-II callus parent A (Hi-II A) with line A of FFMM, we introgressed the ability to form embryogenic callus from Hi-II A into the FFMM-A genetic background. Through multiple generations of iterative self-hybridization or doubled-haploid method, we established maize lines that have a strong ability to produce embryogenic callus from immature embryos and maintain resemblance to FFMM-A in flowering time and stature. Using an Agrobacterium-mediated standard transformation method, we successfully introduced the CRISPR-Cas9 reagents into immature embryos and generated transgenic and mutant lines displaying the expected mutant phenotypes and genotypes. The transformation frequencies of the tested genotypes, defined as the numbers of transgenic event producing T1 seeds per 100 infected embryos, ranged from 0 to 17.1%. Approximately 80% of transgenic plants analyzed in this study showed various mutation patterns at the target site. The transformable FFMM line, FFMM-AT, can serve as a useful genetic and genomic resource for the maize community.

13.
Sci Rep ; 9(1): 19902, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882637

RESUMO

An important advantage of delivering CRISPR reagents into cells as a ribonucleoprotein (RNP) complex is the ability to edit genes without reagents being integrated into the genome. Transient presence of RNP molecules in cells can reduce undesirable off-target effects. One method for RNP delivery into plant cells is the use of a biolistic gun. To facilitate selection of transformed cells during RNP delivery, a plasmid carrying a selectable marker gene can be co-delivered with the RNP to enrich for transformed/edited cells. In this work, we compare targeted mutagenesis in rice using three different delivery platforms: biolistic RNP/DNA co-delivery; biolistic DNA delivery; and Agrobacterium-mediated delivery. All three platforms were successful in generating desired mutations at the target sites. However, we observed a high frequency (over 14%) of random plasmid or chromosomal DNA fragment insertion at the target sites in transgenic events generated from both biolistic delivery platforms. In contrast, integration of random DNA fragments was not observed in transgenic events generated from the Agrobacterium-mediated method. These data reveal important insights that must be considered when selecting the method for genome-editing reagent delivery in plants, and emphasize the importance of employing appropriate molecular screening methods to detect unintended alterations following genome engineering.


Assuntos
Sistemas CRISPR-Cas/genética , Oryza/genética , Plasmídeos/genética , RNA de Plantas/genética , Agrobacterium/genética , Fragmentação do DNA , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
14.
BMC Biol ; 17(1): 9, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704461

RESUMO

BACKGROUND: CRISPR-Cas12a (formerly Cpf1) is an RNA-guided endonuclease with distinct features that have expanded genome editing capabilities. Cas12a-mediated genome editing is temperature sensitive in plants, but a lack of a comprehensive understanding on Cas12a temperature sensitivity in plant cells has hampered effective application of Cas12a nucleases in plant genome editing. RESULTS: We compared AsCas12a, FnCas12a, and LbCas12a for their editing efficiencies and non-homologous end joining (NHEJ) repair profiles at four different temperatures in rice. We found that AsCas12a is more sensitive to temperature and that it requires a temperature of over 28 °C for high activity. Each Cas12a nuclease exhibited distinct indel mutation profiles which were not affected by temperatures. For the first time, we successfully applied AsCas12a for generating rice mutants with high frequencies up to 93% among T0 lines. We next pursued editing in the dicot model plant Arabidopsis, for which Cas12a-based genome editing has not been previously demonstrated. While LbCas12a barely showed any editing activity at 22 °C, its editing activity was rescued by growing the transgenic plants at 29 °C. With an early high-temperature treatment regime, we successfully achieved germline editing at the two target genes, GL2 and TT4, in Arabidopsis transgenic lines. We then used high-temperature treatment to improve Cas12a-mediated genome editing in maize. By growing LbCas12a T0 maize lines at 28 °C, we obtained Cas12a-edited mutants at frequencies up to 100% in the T1 generation. Finally, we demonstrated DNA binding of Cas12a was not abolished at lower temperatures by using a dCas12a-SRDX-based transcriptional repression system in Arabidopsis. CONCLUSION: Our study demonstrates the use of high-temperature regimes to achieve high editing efficiencies with Cas12a systems in rice, Arabidopsis, and maize and sheds light on the mechanism of temperature sensitivity for Cas12a in plants.


Assuntos
Arabidopsis/genética , Sistemas CRISPR-Cas , Edição de Genes , Oryza/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Genoma de Planta , Temperatura
15.
Plant Mol Biol ; 99(4-5): 317-328, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30645710

RESUMO

KEY MESSAGE: Combining with a CRISPR/Cas9 system, Agrobacterium-mediated transformation can lead to precise targeted T-DNA integration in the rice genome. Agrobacterium-mediated T-DNA integration into the plant genomes is random, which often causes variable transgene expression and insertional mutagenesis. Because T-DNA preferentially integrates into double-strand DNA breaks, we adapted a CRISPR/Cas9 system to demonstrate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Agrobacterium binary vector, we constructed a T-DNA that contains a CRISPR/Cas9 system using SpCas9 and a gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020. The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII) gene. One version of the vector had hptII expression driven by an OsAct2 promoter. In an effort to detect targeted T-DNA insertion events, we built another T-DNA with a promoterless hptII gene adjacent to the T-DNA right border such that integration of T-DNA into the targeted exon sequence in-frame with the hptII gene would allow hptII expression. Our results showed that these constructs could produce targeted T-DNA insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in addition to generating a high frequency (50-80%) of targeted indel mutations. Sequencing analyses showed that four out of five sequenced T-DNA/gDNA junctions carry a single copy of full-length T-DNA at the target site. Our results indicate that Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can efficiently generate targeted T-DNA insertions.


Assuntos
Sistemas CRISPR-Cas/genética , DNA Bacteriano/genética , Genoma de Planta/genética , Mutagênese Insercional/métodos , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Agrobacterium/genética , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Éxons , Edição de Genes , Regulação da Expressão Gênica de Plantas/genética , Frequência do Gene , Marcação de Genes , Genes de Plantas/genética , Vetores Genéticos/genética , Mutação INDEL , Proteínas Luminescentes/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Análise de Sequência , Proteína Vermelha Fluorescente
16.
Methods Mol Biol ; 1917: 121-143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610633

RESUMO

Precise genome engineering can be efficiently made using the revolutionary tool named CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein) systems. Adapted from the bacterial immune system, CRISPR/Cas systems can generate highly specific double-strand breaks (DSBs) at the target site, and desired sequence modifications can be introduced during the DSB repair process, such as nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways. CRISPR/Cas9 is the most widely used genome editing tool for targeted mutagenesis, precise sequence modification, transcriptional reprogramming, epigenome editing, disease treatment, and many more. The ease of use and high specificity make CRISPR/Cas9 a great tool not only for basic researches but also for crop trait improvements, such as higher grain yield, better tolerance to abiotic stresses, enhanced disease resistance, and better nutritional contents. In this protocol, we present a step-by-step guide to the CRISPR/Cas9-mediated targeted mutagenesis in maize Hi II genotype. Detailed procedures will guide through the essential steps including gRNA design, CRISPR/Cas9 vector construction, Agrobacterium-mediated maize immature embryo transformation, and molecular analysis of the transgenic plants to identify desired mutant lines.


Assuntos
Agrobacterium/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Zea mays/genética , Mutagênese/genética , Transformação Genética/genética
17.
Plant Biotechnol J ; 17(2): 362-372, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29972722

RESUMO

CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9-guide RNA (gRNA) and LbCas12a-CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium-mediated transformation. On-target mutation analysis showed that 90%-100% of the Cas9-edited T0 plants carried indel mutations and 63%-77% of them were homozygous or biallelic mutants. In contrast, 0%-60% of Cas12a-edited T0 plants had on-target mutations. We then conducted CIRCLE-seq analysis to identify genome-wide potential off-target sites for Cas9. A total of 18 and 67 potential off-targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off-target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma de Planta/genética , Zea mays/enzimologia , Agrobacterium , Endonucleases/genética , Marcação de Genes/métodos , Mutagênese , Mutação , RNA Guia de Cinetoplastídeos/genética , Alinhamento de Sequência , Zea mays/genética
18.
Curr Top Microbiol Immunol ; 418: 195-213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556823

RESUMO

During the last decade, small noncoding RNAs (ncRNAs) have emerged as essential post-transcriptional regulators in bacteria. Nearly all important physiological and stress responses are modulated by ncRNA regulators, such as riboswitches, trans-acting small RNAs (sRNAs), and cis-antisense RNAs. Recently, three RNA-seq studies identified a total of 1534 candidate ncRNAs from Agrobacterium tumefaciens, a pathogen and biotechnology tool for plants. Only a few ncRNAs have been functionally characterized in A. tumefaciens, and some of them appear to be involved in virulence. AbcR1 regulates multiple ABC transporters and modulates uptake of a quorum-sensing inhibitor produced by plants. RNA1111, a Ti plasmid-encoded sRNA, might regulate the dispersal of the Ti plasmid and virulence. In addition, a chromosomally encoded sRNA Atr35C is induced by the vir gene regulator VirG and its expression is affected by iron, manganese, and hydrogen peroxide, suggesting a possible role in oxidative stress responses and Agrobacterium-plant interactions. Progress in ncRNA functional analysis is slow, likely resulting from innate challenges, such as poor sequence conservation and imperfect base-pairing between sRNAs and mRNAs, which make computational target predictions inefficient. Advances in single-cell-based RNA-seq and proteomics approaches would provide valuable tools to reveal regulatory networks involving ncRNA regulators.


Assuntos
Agrobacterium tumefaciens/genética , Pequeno RNA não Traduzido/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Mensageiro/genética
19.
PLoS One ; 8(8): e70720, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950988

RESUMO

Agrobacterium tumefaciens is a plant pathogen that has the natural ability of delivering and integrating a piece of its own DNA into plant genome. Although bacterial non-coding RNAs (ncRNAs) have been shown to regulate various biological processes including virulence, we have limited knowledge of how Agrobacterium ncRNAs regulate this unique inter-Kingdom gene transfer. Using whole transcriptome sequencing and an ncRNA search algorithm developed for this work, we identified 475 highly expressed candidate ncRNAs from A. tumefaciens C58, including 101 trans-encoded small RNAs (sRNAs), 354 antisense RNAs (asRNAs), 20 5' untranslated region (UTR) leaders including a RNA thermosensor and 6 riboswitches. Moreover, transcription start site (TSS) mapping analysis revealed that about 51% of the mapped mRNAs have 5' UTRs longer than 60 nt, suggesting that numerous cis-acting regulatory elements might be encoded in the A. tumefaciens genome. Eighteen asRNAs were found on the complementary strands of virA, virB, virC, virD, and virE operons. Fifteen ncRNAs were induced and 7 were suppressed by the Agrobacterium virulence (vir) gene inducer acetosyringone (AS), a phenolic compound secreted by the plants. Interestingly, fourteen of the AS-induced ncRNAs have putative vir box sequences in the upstream regions. We experimentally validated expression of 36 ncRNAs using Northern blot and Rapid Amplification of cDNA Ends analyses. We show functional relevance of two 5' UTR elements: a RNA thermonsensor (C1_109596F) that may regulate translation of the major cold shock protein cspA, and a thi-box riboswitch (C1_2541934R) that may transcriptionally regulate a thiamine biosynthesis operon, thiCOGG. Further studies on ncRNAs functions in this bacterium may provide insights and strategies that can be used to better manage pathogenic bacteria for plants and to improve Agrobacterum-mediated plant transformation.


Assuntos
Agrobacterium tumefaciens/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA não Traduzido/genética , Proteínas de Bactérias/genética , Genes Bacterianos , Óperon
20.
Appl Environ Microbiol ; 78(10): 3656-67, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407693

RESUMO

The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for 7 days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcriptomic profiles. When grown together, decreased biomass accumulation occurs for both fungi after an initial acceleration of growth compared to the biomass changes that occur when grown alone. The biomass of U. maydis declined most severely over time and may be attributed to the action of F. verticillioides, which secretes toxic secondary metabolites and expresses genes encoding adhesive and cell wall-degrading proteins at higher levels than when grown alone. U. maydis responds to cocultivation by expressing siderophore biosynthetic genes and more highly expresses genes potentially involved in toxin biosynthesis. Also, higher expression was noted for clustered genes encoding secreted proteins that are unique to U. maydis and that may play a role during colonization of maize. Conversely, decreased gene expression was seen for U. maydis genes encoding the synthesis of ustilagic acid, mannosylerythritol D, and another uncharacterized metabolite. Ultimately, U. maydis is unable to react efficiently to the toxic response of F. verticillioides and proportionally loses more biomass. This in vitro study clarifies potential mechanisms of antagonism between these two fungi that also may occur in the soil or in maize, niches for both fungi where they likely interact in nature.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Metaboloma , Interações Microbianas , Transcriptoma , Ustilago/genética , Ustilago/metabolismo , Biomassa , Meios de Cultura , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Fatores de Tempo , Ustilago/crescimento & desenvolvimento , Ustilago/fisiologia , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...