Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Converg ; 11(1): 19, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739358

RESUMO

Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.

2.
Adv Sci (Weinh) ; : e2306432, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647391

RESUMO

The CRISPR-Cas9 technology has the potential to revolutionize the treatment of various diseases, including Rett syndrome, by enabling the correction of genes or mutations in human patient cells. However, several challenges need to be addressed before its widespread clinical application. These challenges include the low delivery efficiencies to target cells, the actual efficiency of the genome-editing process, and the precision with which the CRISPR-Cas system operates. Herein, the study presents a Magnetic Nanoparticle-Assisted Genome Editing (MAGE) platform, which significantly improves the transfection efficiency, biocompatibility, and genome-editing accuracy of CRISPR-Cas9 technology. To demonstrate the feasibility of the developed technology, MAGE is applied to correct the mutated MeCP2 gene in induced pluripotent stem cell-derived neural progenitor cells (iPSC-NPCs) from a Rett syndrome patient. By combining magnetofection and magnetic-activated cell sorting, MAGE achieves higher multi-plasmid delivery (99.3%) and repairing efficiencies (42.95%) with significantly shorter incubation times than conventional transfection agents without size limitations on plasmids. The repaired iPSC-NPCs showed similar characteristics as wild-type neurons when they differentiated into neurons, further validating MAGE and its potential for future clinical applications. In short, the developed nanobio-combined CRISPR-Cas9 technology offers the potential for various clinical applications, particularly in stem cell therapies targeting different genetic diseases.

3.
Adv Mater ; 36(19): e2308377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353580

RESUMO

The removal of dying cells, or efferocytosis, is an indispensable part of resolving inflammation. However, the inflammatory microenvironment of the atherosclerotic plaque frequently affects the biology of both apoptotic cells and resident phagocytes, rendering efferocytosis dysfunctional. To overcome this problem, a chimeric antigen receptor (CAR) macrophage that can target and engulf phagocytosis-resistant apoptotic cells expressing CD47 is developed. In both normal and inflammatory circumstances, CAR macrophages exhibit activity equivalent to antibody blockage. The surface of CAR macrophages is modified with reactive oxygen species (ROS)-responsive therapeutic nanoparticles targeting the liver X receptor pathway to improve their cell effector activities. The combination of CAR and nanoparticle engineering activated lipid efflux pumps enhances cell debris clearance and reduces inflammation. It is further suggested that the undifferentiated CAR-Ms can transmigrate within a mico-fabricated vessel system. It is also shown that our CAR macrophage can act as a chimeric switch receptor (CSR) to withstand the immunosuppressive inflammatory environment. The developed platform has the potential to contribute to the advancement of next-generation cardiovascular disease therapies and further studies include in vivo experiments.


Assuntos
Receptores X do Fígado , Macrófagos , Nanopartículas , Fagocitose , Espécies Reativas de Oxigênio , Receptores de Antígenos Quiméricos , Transdução de Sinais , Nanopartículas/química , Macrófagos/metabolismo , Receptores X do Fígado/metabolismo , Animais , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antígeno CD47/metabolismo , Apoptose/efeitos dos fármacos , Eferocitose , Lipossomos
4.
Bioact Mater ; 34: 164-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343773

RESUMO

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

6.
Adv Mater ; 35(41): e2303021, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37327108

RESUMO

Degeneration of fibrocartilaginous tissues is often associated with complex pro-inflammatory factors. These include reactive oxygen species (ROS), cell-free nucleic acids (cf-NAs), and epigenetic changes in immune cells. To effectively control this complex inflammatory signaling, it developed an all-in-one nanoscaffold-based 3D porous hybrid protein (3D-PHP) self-therapeutic strategy for treating intervertebral disc (IVD) degeneration. The 3D-PHP nanoscaffold is synthesized by introducing a novel nanomaterial-templated protein assembly (NTPA) strategy. 3D-PHP nanoscaffolds that avoid covalent modification of proteins demonstrate inflammatory stimuli-responsive drug release, disc-mimetic stiffness, and excellent biodegradability. Enzyme-like 2D nanosheets incorporated into nanoscaffolds further enabled robust scavenging of ROS and cf-NAs, reducing inflammation and enhancing the survival of disc cells under inflammatory stress in vitro. Implantation of 3D-PHP nanoscaffolds loaded with bromodomain extraterminal inhibitor (BETi) into a rat nucleotomy disc injury model effectively suppressed inflammation in vivo, thus promoting restoration of the extracellular matrix (ECM). The resulting regeneration of disc tissue facilitated long-term pain reduction. Therefore, self-therapeutic and epigenetic modulator-encapsulated hybrid protein nanoscaffold shows great promise as a novel approach to restore dysregulated inflammatory signaling and treat degenerative fibrocartilaginous diseases, including disc injuries, providing hope and relief to patients worldwide.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Porinas , Porosidade , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo
7.
Small ; : e2300744, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058079

RESUMO

Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.

8.
Artif Organs ; 47(7): 1104-1121, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36820496

RESUMO

BACKGROUND: Nitric oxide is a chemical agent produced by endothelial cells in a healthy blood vessel, inhibiting the overgrowth of vascular smooth muscle cells and regulating vessel tone. Liposomes are biocompatible and biodegradable drug carriers with a similar structure to cell bilayer phospholipid membrane that can be used as useful nitric oxide carriers in vascular grafts. METHOD: Using a custom-designed apparatus, the sheep carotid arteries were decellularized while still maintaining important components of the vascular extracellular matrix (ECM), allowing them to be used as small-diameter vascular grafts. A chemical signal of sodium nitrite was applied to control smooth muscle cells' behavior under static and dynamic cell culture conditions. The thin film hydration approach was used to create nano-liposomes, which were then used as sodium nitrite carriers to control the drug release rate and enhance the amount of drug loaded into the liposomes. RESULTS: The ratio of 80:20:2 for DPPC: Cholesterol: PEG was determined as the optimum formulation of the liposome structure with high drug encapsulation efficiency (98%) and optimum drug release rate (the drug release rate was 40%, 65%, and 83% after 24, 48, and 72 h, respectively). MTT assay results showed an improvement in endothelial cell proliferation in the presence of nano-liposomal sodium nitrite (LNS) at the concentration of 0.5 µg/mL. Using a suitable concentration of liposomal sodium nitrite (0.5 µg/mL) put onto the constructed scaffold resulted in the controllable development of smooth muscle cells in the experiment. The culture of smooth muscle cells in a pulsatile perfusion bioreactor indicated that in the presence of synthesized liposomal sodium nitrite, the overgrowth of smooth muscle cells was inhibited in dynamic cell culture conditions. The mechanical properties of ECM graft were measured, and a multi-scale model with an accuracy of 83% was proposed to predict mechanical properties successfully. CONCLUSION: The liposomal drug-loaded small-diameter vascular graft can prevent the overgrowth of SMCs and the formation of intimal hyperplasia in the graft. Aside from that, the effect of LNS on endothelial has the potential to stimulate endothelial cell proliferation and re-endothelialization.


Assuntos
Lipossomos , Engenharia Tecidual , Animais , Ovinos , Engenharia Tecidual/métodos , Nitrito de Sódio/farmacologia , Nitrito de Sódio/metabolismo , Células Endoteliais , Óxido Nítrico/metabolismo , Prótese Vascular , Miócitos de Músculo Liso/metabolismo
9.
ACS Nano ; 17(4): 3750-3764, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780291

RESUMO

Effective therapeutic approaches to overcome the heterogeneous pro-inflammatory and inhibitory extracellular matrix (ECM) microenvironment are urgently needed to achieve robust structural and functional repair of severely wounded fibrocartilaginous tissues. Herein we developed a dynamic and multifunctional nanohybrid peptide hydrogel (NHPH) through hierarchical self-assembly of peptide amphiphile modified with biodegradable two-dimensional nanomaterials with enzyme-like functions. NHPH is not only injectable, biocompatible, and biodegradable but also therapeutic by catalyzing the scavenging of pro-inflammatory reactive oxygen species and promoting ECM remodeling. In addition, our NHPH method facilitated the structural and functional recovery of the intervertebral disc (IVD) after severe injuries by delivering pro-regenerative cytokines in a sustained manner, effectively suppressing immune responses and eventually restoring the regenerative microenvironment of the ECM. In parallel, the NHPH-enhanced nucleus pulposus cell differentiation and pain reduction in a rat nucleotomy model further validated the therapeutic potential of NHPH. Collectively, our advanced nanoscaffold technology will provide an alternative approach for the effective treatment of IVD degeneration as well as other fibrocartilaginous tissue injuries.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Disco Intervertebral/fisiologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Regeneração
10.
Bioorg Chem ; 133: 106233, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731293

RESUMO

Dedifferentiation of vascular smooth muscle cells (VSMCs) from a functional phenotype to an inverse synthetic phenotype is a symptom of cardiovascular disorders, such as atherosclerosis and hypertension. The sympathetic nervous system (SNS) is an essential regulator of the differentiation of vascular smooth muscle cells (VSMCs). In addition, numerous studies suggest that SNS also stimulates VSMCs to retain their contractile phenotype. However, the molecular mechanisms for this stimulation have not been thoroughly studied. In this study, we used a novel in vitro co-culture method to evaluate the effective cellular interactions and stimulatory effects of sympathetic neurons on the differentiation of VSMCs. We co-cultured rat neural-like pheochromocytoma cells (PC12) and rat aortic VSMCs with this method. Expression of VSMCs contractile genes, including smooth muscle actin (acta2), myosin heavy chain (myh11), elastin (eln), and smoothelin (smtn), were determined by quantitative real-time-PCR analysis as an indicator of VSMCs differentiation. Fold changes for specific contractile genes in VSMCs grown in vitro for seven days in the presence (innervated) and absence (non-innervated) of sympathetic neurons were 3.5 for acta2, 6.5 for myh11, 4.19 for eln, and 4 for smtn (normalized to Tata Binding Protein (TBP)). As a result, these data suggest that sympathetic innervation promotes VSMCs' contractile gene expression and also maintains VSMCs' functional phenotype.


Assuntos
Hipertensão , Músculo Liso Vascular , Ratos , Animais , Músculo Liso Vascular/metabolismo , Técnicas de Cocultura , Diferenciação Celular , Aorta/metabolismo , Hipertensão/metabolismo , Células Cultivadas , Fenótipo
12.
Nano Lett ; 23(5): 2046-2055, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36688839

RESUMO

The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.


Assuntos
DNA Mitocondrial , Nanopartículas , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Transcrição Gênica , Transporte Biológico
13.
Tissue Cell ; 81: 101996, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657256

RESUMO

In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 µA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and ß-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and ß-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.


Assuntos
Actinas , Músculo Liso Vascular , Animais , Ovinos , Músculo Liso Vascular/metabolismo , Actinas/metabolismo , Nestina , Vimentina/metabolismo , Diferenciação Celular/fisiologia , Fenótipo , Estimulação Elétrica , Células Cultivadas , Proliferação de Células
14.
Bioact Mater ; 23: 551-562, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36582500

RESUMO

Intervertebral disc (IVD) degeneration is a leading cause of back pain and precursor to more severe conditions, including disc herniation and spinal stenosis. While traditional growth factor therapies (e.g., TGFß) are effective at transiently reversing degenerated disc by stimulation of matrix synthesis, it is increasingly accepted that bioscaffolds are required for sustained, complete IVD regeneration. Current scaffolds (e.g., metal/polymer composites, non-mammalian biopolymers) can be improved in one or more IVD regeneration demands: biodegradability, noninvasive injection, recapitulated healthy IVD biomechanics, predictable crosslinking, and matrix repair induction. To meet these demands, tetrazine-norbornene bioorthogonal ligation was combined with gelatin to create an injectable bioorthogonal hydrogel (BIOGEL). The liquid hydrogel precursors remain free-flowing across a wide range of temperatures and crosslink into a robust hydrogel after 5-10 min, allowing a human operator to easily inject the therapeutic constructs into degenerated IVD. Moreover, BIOGEL encapsulation of TGFß potentiated histological repair (e.g., tissue architecture and matrix synthesis) and functional recovery (e.g., high water retention by promoting the matrix synthesis and reduced pain) in an in vivo rat IVD degeneration/nucleotomy model. This BIOGEL procedure readily integrates into existing nucleotomy procedures, indicating that clinical adoption should proceed with minimal difficulty. Since bioorthogonal crosslinking is essentially non-reactive towards biomolecules, our developed material platform can be extended to other payloads and degenerative injuries.

15.
Angew Chem Int Ed Engl ; 62(3): e202211704, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36349405

RESUMO

Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.


Assuntos
Fulerenos , Ligantes , Meios de Contraste
16.
Adv Drug Deliv Rev ; 192: 114636, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481291

RESUMO

Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.


Assuntos
Nanoestruturas , Doenças Neurodegenerativas , Humanos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Sistema Nervoso Central , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico
17.
Research (Wash D C) ; 2022: 9784273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204248

RESUMO

A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.

18.
Proc Natl Acad Sci U S A ; 119(42): e2117467119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215467

RESUMO

Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.


Assuntos
Celulase , Clostridium thermocellum , Acústica , Proteínas de Bactérias/metabolismo , Carboidratos/química , Celulase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/metabolismo , Análise Espectral , Açúcares
19.
Adv Mater ; 34(49): e2205498, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36268986

RESUMO

Dynamic manipulation of supramolecular self-assembled structures is achieved irreversibly or under non-physiological conditions, thereby limiting their biomedical, environmental, and catalysis applicability. In this study, microgels composed of azobenzene derivatives stacked via π-cation and π-π interactions are developed that are electrostatically stabilized with Arg-Gly-Asp (RGD)-bearing anionic polymers. Lateral swelling of RGD-bearing microgels occurs via cis-azobenzene formation mediated by near-infrared-light-upconverted ultraviolet light, which disrupts intermolecular interactions on the visible-light-absorbing upconversion-nanoparticle-coated materials. Real-time imaging and molecular dynamics simulations demonstrate the deswelling of RGD-bearing microgels via visible-light-mediated trans-azobenzene formation. Near-infrared light can induce in situ swelling of RGD-bearing microgels to increase RGD availability and trigger release of loaded interleukin-4, which facilitates the adhesion structure assembly linked with pro-regenerative polarization of host macrophages. In contrast, visible light can induce deswelling of RGD-bearing microgels to decrease RGD availability that suppresses macrophage adhesion that yields pro-inflammatory polarization. These microgels exhibit high stability and non-toxicity. Versatile use of ligands and protein delivery can offer cytocompatible and photoswitchable manipulability of diverse host cells.


Assuntos
Microgéis , Macrófagos
20.
Soft Matter ; 18(36): 6800-6811, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36043848

RESUMO

Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume element (RVE) model for numerically computing the tensile and bending parameters of PMMA-MWCNT nanocomposites. Finally, MTT assays were utilized to evaluate the cell viability on the surface of nanobiocomposites. The results show that by increasing the MWCNT amount in the PMMA-based cement, the bending strengths (BS), tensile strength (TS), and elastic modulus (EM) increased considerably. Furthermore, the disparity between the FEA and experimental TS, EM, and BS values was less than 20%. According to MTT viability experiments, adding MWCNTs to PMMA had no influence on PMMA toxicity and resulted in a negative response to interaction with mesenchymal stem cells. The cell density on the nanobiocomposite was more than pristine-PMMA.


Assuntos
Nanotubos de Carbono , Polimetil Metacrilato , Cimentos Ósseos , Análise de Elementos Finitos , Teste de Materiais , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...