Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biotechnol Bioeng ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715197

RESUMO

The human microbiota impacts a variety of diseases and responses to therapeutics. Due to a lack of robust in vitro models, detailed mechanistic explanations of host-microbiota interactions cannot often be recapitulated. We describe the design and development of a novel, versatile and modular in vitro system that enables indirect coculture of human epithelial cells with anaerobic bacteria for the characterization of host-microbe secreted metabolite interactions. This system was designed to compartmentalize anaerobes and human cells in separate chambers conducive to each organism's requisite cell growth conditions. Using perfusion, fluidic mixing, and automated sample collection, the cells continuously received fresh media, while in contact with their corresponding compartments conditioned supernatant. Supernatants from each chamber were collected in a cell-free time-resolved fashion. The system sustained low oxygen conditions in the anaerobic chamber, while also supporting the growth of a representative anaerobe (Bacteroides thetaiotaomicron) and a human colonic epithelial cell line (Caco-2) in the aerobic chamber. Caco-2 global gene expression changes in response to coculture with B. thetaiotaomicron was characterized using RNA sequencing. Extensive, targeted metabolomics analysis of over 150 central carbon metabolites was performed on the serially collected supernatants. We observed broad metabolite changes in host-microbe coculture, compared to respective mono-culture controls. These effects were dependent both on sampling time and the compartment probed (apical vs. basolateral). Coculturing resulted in the depletion of several important metabolites, including guanine, uridine 5'-monophosphate, asparagine, and thiamine. Additionally, while Caco-2 cells cultured alone predominantly affected the basolateral metabolite milieu, increased abundance of 2,3-dihydroxyisovalerate and thymine on the basolateral side, occurred when the cells were cocultured with B. thetaiotaomicron. Thus, our system can capture the dynamic, competitive and cooperative processes between host cells and gut microbes.

2.
Biotechnol Bioeng ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686918

RESUMO

Microbial-derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug-resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low-yield biosynthetic gene clusters in the genus Streptomyces. However, low natural product yields-improvements to which have been hindered by the lack of high throughput methods-have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins-angucycline family polyketides under investigation as cancer therapeutics-by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces, as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.

3.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412016

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and ß-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inflamação , Dieta Ocidental/efeitos adversos , Citocinas , Suplementos Nutricionais , Acetatos , Indóis/farmacologia
4.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986805

RESUMO

Microbial derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have potential as new therapeutics to target drug resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low yield biosynthetic gene clusters in the genus Streptomyces . Here, we describe our efforts to improve yields of landomycins - angucycline family polyketides under investigation as cancer therapeutics - by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products absorb in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces , as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.

5.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175855

RESUMO

It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.


Assuntos
Flavonas , Receptores Nucleares Órfãos , Humanos , Flavonas/farmacologia , Ligantes , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Receptores Nucleares Órfãos/metabolismo , Ligação Proteica
6.
Biotechnol Bioeng ; 120(2): 399-408, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259110

RESUMO

Synthetic cell-cell interaction systems can be useful for understanding multicellular communities or for screening binding molecules. We adapt a previously characterized set of synthetic cognate nanobody-antigen pairs to a yeast-bacteria coincubation format and use flow cytometry to evaluate cell-cell interactions mediated by binding between surface-displayed molecules. We further use fluorescence-activated cell sorting to enrich a specific yeast-displayed nanobody within a mixed yeast-display population. Finally, we demonstrate that this system supports the characterization of a therapeutically relevant nanobody-antigen interaction: a previously discovered nanobody that binds to the intimin protein expressed on the surface of enterohemorrhagic Escherichia coli. Overall, our findings indicate that the yeast-bacteria format supports efficient evaluation of ligand-target interactions. With further development, this format may facilitate systematic characterization and high-throughput discovery of bacterial surface-binding molecules.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citometria de Fluxo , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Chem Biol Interact ; 365: 110067, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35917944

RESUMO

Unsubstituted flavone induced CYP1A1, CYP1B1 and UGT1A1 gene expression in Caco2 cells and was characterized as an aryl hydrocarbon receptor (AhR) agonist. The structure-activity relationships among 15 mono- and dihydroxyflavones showed that addition of one or two hydroxyl groups resulted in active (e.g.: 5- and 6- mono- and 5,6-dihydroxyflavones) and inactive (e.g.: 7-mono, 7,4' and 6,4'-dihydroxyflavones) AhR ligands. Ligand docking studies of flavone, mono- and dihydroxyflavones to the human AhR resulted in similar docking scores that varied from -3.48 to -4.58 kcal/mol and these values did not distinguish between AhR-active and AhR-inactive mono- and dihydroxyflavones. The AhR-inactive flavones were subsequently investigated as AhR antagonists by determining their activities as inhibitors of TCDD-induced expression of CYP1A1, CYP1AA2 and UGT 1A1 gene expression in Caco2 cells. Initial studies with 7,4'-dihydroxyflavone showed that this compound was an AhR antagonist in Caco2 cells and resembled the activity of the classical AhR antagonist CH223191. With few exceptions most of the remaining AhR-inactive compounds in terms of inducing AhR responsive genes were also AhR antagonists. Thus, based on modeling studies, mono- and dihydroxyflavones bind with similar affinities to the AhR and exhibit AhR agonist or antagonist activities, however, the structural requirements (substitution patterns) for predicting these opposing activities were not apparent and could only be determined using bioassays.


Assuntos
Flavonas , Receptores de Hidrocarboneto Arílico , Células CACO-2 , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Ligantes , Relação Estrutura-Atividade
8.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159382

RESUMO

There is growing interest in the crosstalk between the gut microbiome, host metabolomic features, and disease pathogenesis. The current investigation compared long-term (26 week) and acute (3 day) dietary spinach intake in a genetic model of colorectal cancer. Metabolomic analyses in the polyposis in rat colon (Pirc) model and in wild-type animals corroborated key contributions to anticancer outcomes by spinach-derived linoleate bioactives and a butanoate metabolite linked to increased α-diversity of the gut microbiome. Combining linoleate and butanoate metabolites in human colon cancer cells revealed enhanced apoptosis and reduced cell viability, paralleling the apoptosis induction in colon tumors from rats given long-term spinach treatment. Mechanistic studies in cell-based assays and in vivo implicated the linoleate and butanoate metabolites in targeting histone deacetylase (HDAC) activity and the interferon-γ (IFN-γ) signaling axis. Clinical translation of these findings to at-risk patients might provide valuable quality-of-life benefits by delaying surgical interventions and drug therapies with adverse side effects.


Assuntos
Ácido Butírico , Neoplasias do Colo , Dieta , Ácido Linoleico , Spinacia oleracea , Animais , Neoplasias do Colo/patologia , Humanos , Interferon gama/uso terapêutico , Metabolômica , Ratos
9.
Cell Mol Life Sci ; 79(2): 78, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044538

RESUMO

Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.


Assuntos
Neurônios Dopaminérgicos/patologia , Doença de Parkinson/patologia , Bioengenharia , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurogênese , Seda/química , Alicerces Teciduais/química
10.
Metabolites ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940581

RESUMO

Much progress has been made in improving the viable cell density of bioreactor cultures in monoclonal antibody production from Chinese hamster ovary (CHO) cells; however, specific productivity (qP) has not been increased to the same degree. In this work, we analyzed a library of 24 antibody-expressing CHO cell clones to identify metabolites that positively associate with qP and could be used for clone selection or medium supplementation. An initial library of 12 clones, each producing one of two antibodies, was analyzed using untargeted LC-MS experiments. Metabolic model-based annotation followed by correlation analysis detected 73 metabolites that significantly correlated with growth, qP, or both. Of these, metabolites in the alanine, aspartate, and glutamate metabolism pathway, and the TCA cycle showed the strongest association with qP. To evaluate whether these metabolites could be used as indicators to identify clones with potential for high productivity, we performed targeted LC-MS experiments on a second library of 12 clones expressing a third antibody. These experiments found that aspartate and cystine were positively correlated with qP, confirming the results from untargeted analysis. To investigate whether qP correlated metabolites reflected endogenous metabolic activity beneficial for productivity, several of these metabolites were tested as medium additives during cell culture. Medium supplementation with citrate improved qP by up to 490% and more than doubled the titer. Together, these studies demonstrate the potential for using metabolomics to discover novel metabolite additives that yield higher volumetric productivity in biologics production processes.

11.
Gut Microbes ; 13(1): 1972756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34494932

RESUMO

Complex interrelationships govern the dynamic interactions between gut microbes, the host, and exogenous drivers of disease outcome. A multi-omics approach to cancer prevention by spinach (SPI) was pursued for the first time in the polyposis in rat colon (Pirc) model. SPI fed for 26 weeks (10% w/w, freeze-dried in the diet) exhibited significant antitumor efficacy and, in the Apc-mutant genetic background, ß-catenin remained highly overexpressed in adenomatous polyps. However, in both wild type and Apc-mutant rats, increased gut microbiome diversity after SPI consumption coincided with reversal of taxonomic composition. Metagenomic prediction implicated linoleate and butanoate metabolism, tricarboxylic acid cycle, and pathways in cancer, which was supported by transcriptomic and metabolomic analyses. Thus, tumor suppression by SPI involved marked reshaping of the gut microbiome along with changes in host RNA-miRNA networks. When colon polyps were compared with matched normal-looking tissues via metabolomics, anticancer outcomes were linked to SPI-derived linoleate bioactives with known anti-inflammatory/ proapoptotic mechanisms, as well as N-aceto-2-hydroxybutanoate, consistent with altered butanoate metabolism stemming from increased α-diversity of the gut microbiome. In colon tumors from SPI-fed rats, L-glutamate and N-acetylneuraminate also were reduced, implicating altered mitochondrial energetics and cell surface glycans involved in oncogenic signaling networks and immune evasion. In conclusion, a multi-omics approach to cancer prevention by SPI provided mechanistic support for linoleate and butanoate metabolism, as well as tumor-associated changes in L-glutamate and N-acetylneuraminate. Additional factors, such as the fiber content, also warrant further investigation with a view to delaying colectomy and drug intervention in at-risk patients.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Pólipos Adenomatosos/metabolismo , Neoplasias do Colo/dietoterapia , Microbioma Gastrointestinal/fisiologia , Spinacia oleracea , Animais , Ácido Butírico/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Neoplasias do Colo/patologia , Dieta , Ácido Glutâmico/metabolismo , Ácido Linoleico/metabolismo , Masculino , Mitocôndrias/metabolismo , Ácidos Neuramínicos/metabolismo , Ratos , Ratos Endogâmicos F344 , Verduras
12.
MAbs ; 13(1): 1963094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424810

RESUMO

Monoclonal antibody (mAb) interchain disulfide bond reduction can cause a loss of function and negatively impact the therapeutic's efficacy and safety. Disulfide bond reduction has been observed at various stages during the manufacturing process, including processing of the harvested material. The factors and mechanisms driving this phenomenon are not fully understood. In this study, we examined the host cell proteome as a potential factor affecting the susceptibility of a mAb to disulfide bond reduction in the harvested cell culture fluid (HCCF). We used untargeted liquid-chromatography-mass spectrometry-based proteomics experiments in conjunction with a semi-automated protein identification workflow to systematically compare Chinese hamster ovary (CHO) cell protein abundances between bioreactor conditions that result in reduction-susceptible and reduction-free HCCF. Although the growth profiles and antibody titers of these two bioreactor conditions were indistinguishable, we observed broad differences in host cell protein (HCP) expression. We found significant differences in the abundance of glycolytic enzymes, key protein reductases, and antioxidant defense enzymes. Multivariate analysis of the proteomics data determined that upregulation of stress-inducible endoplasmic reticulum (ER) and other chaperone proteins is a discriminatory characteristic of reduction-susceptible HCP profiles. Overall, these results suggest that stress response pathways activated during bioreactor culture increase the reduction-susceptibility of HCCF. Consequently, these pathways could be valuable targets for optimizing culture conditions to improve protein quality.


Assuntos
Anticorpos Monoclonais/biossíntese , Dissulfetos/metabolismo , Proteoma , Proteômica , Estresse Fisiológico , Animais , Anticorpos Monoclonais/genética , Reatores Biológicos , Células CHO , Cricetulus , Estresse do Retículo Endoplasmático , Glicólise , Proteínas de Choque Térmico/metabolismo , Estresse Oxidativo , Mapas de Interação de Proteínas
13.
Annu Rev Biomed Eng ; 23: 339-357, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852346

RESUMO

The rise of antibiotic-resistant strains of bacterial pathogens has necessitated the development of new therapeutics. Antimicrobial peptides (AMPs) are a class of compounds with potentially attractive therapeutic properties, including the ability to target specific groups of bacteria. In nature, AMPs exhibit remarkable structural and functional diversity, which may be further enhanced through genetic engineering, high-throughput screening, and chemical modification strategies. In this review, we discuss the molecular mechanisms underlying AMP selectivity and highlight recent computational and experimental efforts to design selectively targeting AMPs. While there has been an extensive effort to find broadly active and highly potent AMPs, it remains challenging to design targeting peptides to discriminate between different bacteria on the basis of physicochemical properties. We also review approaches for measuring AMP activity, point out the challenges faced in assaying for selectivity, and discuss the potential for increasing AMP diversity through chemical modifications.


Assuntos
Peptídeos Antimicrobianos , Engenharia de Proteínas , Antibacterianos , Bactérias , Humanos
14.
mSphere ; 6(1)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472981

RESUMO

The mammalian gut microbiota is a complex community of microorganisms which typically exhibits remarkable stability. As the gut microbiota has been shown to affect many aspects of host health, the molecular keys to developing and maintaining a "healthy" gut microbiota are highly sought after. Yet, the qualities that define a microbiota as healthy remain elusive. We used the ability to resist change in response to antibiotic disruption, a quality we refer to as ecological resistance, as a metric for the health of the bacterial microbiota. Using a mouse model, we found that colonization with the commensal fungus Candida albicans decreased the ecological resistance of the bacterial microbiota in response to the antibiotic clindamycin such that increased microbiota disruption was observed in C. albicans-colonized mice compared to that in uncolonized mice. C. albicans colonization resulted in decreased alpha diversity and small changes in abundance of bacterial genera prior to clindamycin challenge. Strikingly, co-occurrence network analysis demonstrated that C. albicans colonization resulted in sweeping changes to the co-occurrence network structure, including decreased modularity and centrality and increased density. Thus, C. albicans colonization resulted in changes to the bacterial microbiota community and reduced its ecological resistance.IMPORTANCECandida albicans is the most common fungal member of the human gut microbiota, yet its ability to interact with and affect the bacterial gut microbiota is largely uncharacterized. Previous reports showed limited changes in microbiota composition as defined by bacterial species abundance as a consequence of C. albicans colonization. We also observed only a few bacterial genera that were significantly altered in abundance in C. albicans-colonized mice; however, C. albicans colonization significantly changed the structure of the bacterial microbiota co-occurrence network. Additionally, C. albicans colonization changed the response of the bacterial microbiota ecosystem to a clinically relevant perturbation, challenge with the antibiotic clindamycin.


Assuntos
Antibacterianos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Clindamicina/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Animais , Candida albicans/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Ceco/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Variação Genética , Camundongos , Camundongos Endogâmicos C57BL
15.
Microb Cell Fact ; 19(1): 219, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256731

RESUMO

BACKGROUND: Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. RESULTS: Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. CONCLUSIONS: Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dieta , Fezes/microbiologia , Metaboloma , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Akkermansia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias do Colo/microbiologia , DNA Bacteriano , Feminino , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , RNA Ribossômico 16S , Receptores de Hidrocarboneto Arílico/genética
16.
Curr Opin Biotechnol ; 66: 301-311, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33248408

RESUMO

The gut microbiota and its metabolites play critical roles in human health and disease. Advances in high-throughput sequencing, mass spectrometry, and other omics assay platforms have improved our ability to generate large volumes of data exploring the temporal variations in the compositions and functions of microbial communities. To elucidate mechanisms, methods and tools are needed that can rigorously model the dependencies within time-series data. Longitudinal data are often sparse and unevenly sampled, and nontrivial challenges remain in determining statistical significance, normalization across different data types, and model validation. In this review, we highlight recent developments in models and software tools for the analysis of time series microbiome and metabolome data, as well as integration of these data.


Assuntos
Microbioma Gastrointestinal , Microbiota , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas , Metaboloma
17.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G227-G237, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597706

RESUMO

Antibiotic treatment is a standard therapy for Clostridioides difficile infection, but dysbiosis of the gut microbiota due to antibiotic exposure is also a major risk factor for the disease. Following an initial episode of C. difficile infection, a relentless cycle of recurrence can occur, where persistent treatment-related dysbiosis predisposes the patient to subsequent relapse. This study uses a longitudinal study design to compare the effects of a narrow-spectrum (ridinilazole) or broad-spectrum antibiotic (vancomycin) on intestinal bile acid profiles and their associations with gut bacteria over the course of C. difficile infection treatment. At the end of treatment (day 10), subjects receiving vancomycin showed a nearly 100-fold increase in the ratio of conjugated to secondary bile acids in their stool compared with baseline, whereas subjects receiving ridinilazole maintained this ratio near baseline levels. Correlation analysis detected significant positive associations between secondary bile acids and several Bacteroidales and Clostridiales families. These families were depleted in the vancomycin group but preserved at near-baseline abundance in the ridinilazole group. Enterobacteriaceae, which expanded to a greater extent in the vancomycin group, correlated negatively and positively with secondary and conjugated primary bile acids, respectively. Bile acid ratios at the end of treatment were significantly different between those who recurred and those who did not. These results indicate that a narrow-spectrum antibiotic maintains an intestinal bile acid profile associated with a lowered risk of recurrence.NEW & NOTEWORTHY This is the first study to demonstrate in humans the relationships between Clostridioides difficile antibiotic treatment choice and bile acid metabolism both during therapy and after treatment cessation. The results show a microbiota- and metabolome-preserving property of a novel narrow-spectrum agent that correlates with the agent's favorable sustained clinical response rates compared with broad-spectrum antibiotic treatment.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Ácidos e Sais Biliares/química , Clostridiales/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Piridinas/farmacologia , Ácidos e Sais Biliares/metabolismo , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos
18.
Metabolites ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429145

RESUMO

Chinese hamster ovary (CHO) cells are widely used for the production of biopharmaceuticals. Efforts to improve productivity through medium design and feeding strategy optimization have focused on preventing the depletion of essential nutrients and managing the accumulation of lactate and ammonia. In addition to ammonia and lactate, many other metabolites accumulate in CHO cell cultures, although their effects remain largely unknown. Elucidating these effects has the potential to further improve the productivity of CHO cell-based bioprocesses. This study used untargeted metabolomics to identify metabolites that accumulate in fed-batch cultures of monoclonal antibody (mAb) producing CHO cells. The metabolomics experiments profiled six cell lines that are derived from two different hosts, produce different mAbs, and exhibit different growth profiles. Comparing the cell lines' metabolite profiles at different growth stages, we found a strong negative correlation between peak viable cell density (VCD) and a tryptophan metabolite, putatively identified as 5-hydroxyindoleacetaldehyde (5-HIAAld). Amino acid supplementation experiments showed strong growth inhibition of all cell lines by excess tryptophan, which correlated with the accumulation of 5-HIAAld in the culture medium. Prospectively, the approach presented in this study could be used to identify cell line- and host-independent metabolite markers for clone selection and bioprocess development.

19.
Metabolites ; 10(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326153

RESUMO

Mass spectrometry coupled with chromatography separation techniques provides a powerful platform for untargeted metabolomics. Determining the chemical identities of detected compounds however remains a major challenge. Here, we present a novel computational workflow, termed extended metabolic model filtering (EMMF), that aims to engineer a candidate set, a listing of putative chemical identities to be used during annotation, through an extended metabolic model (EMM). An EMM includes not only canonical substrates and products of enzymes already cataloged in a database through a reference metabolic model, but also metabolites that can form due to substrate promiscuity. EMMF aims to strike a balance between discovering previously uncharacterized metabolites and the computational burden of annotation. EMMF was applied to untargeted LC-MS data collected from cultures of Chinese hamster ovary (CHO) cells and murine cecal microbiota. EMM metabolites matched, on average, to 23.92% of measured masses, providing a > 7-fold increase in the candidate set size when compared to a reference metabolic model. Many metabolites suggested by EMMF are not catalogued in PubChem. For the CHO cell, we experimentally confirmed the presence of 4-hydroxyphenyllactate, a metabolite predicted by EMMF that has not been previously documented as part of the CHO cell metabolic model.

20.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822602

RESUMO

Exposure to environmental chemicals during windows of development is a potentially contributing factor in gut microbiota dysbiosis and linked to chronic diseases and developmental disorders. We used a community-level model of microbiota metabolism to investigate the effects of diethylhexyl phthalate (DEHP), a ubiquitous plasticizer implicated in neurodevelopmental disorders, on the composition and metabolite outputs of gut microbiota in young mice. Administration of DEHP by oral gavage increased the abundance of Lachnoclostridium, while decreasing Clostridium sensu stricto Addition of DEHP to in vitro-cultured cecal microbiota increased the abundance of Paenibacillus and Lachnoclostridium Untargeted metabolomics showed that DEHP broadly altered the metabolite profile in the culture. Notably, DEHP enhanced the production of p-cresol while inhibiting butyrate synthesis. Metabolic model-guided correlation analysis indicated that the likely sources of p-cresol are Clostridium species. Monoculture of Lachnoclostridium bolteae confirmed that it is capable of producing p-hydroxyphenylacetic acid, the immediate precursor of p-cresol, and that the species' growth is enhanced upon DEHP exposure. Taken together, these findings suggest a model where DEHP increases production of p-cresol, a bacterial metabolite linked with neurodevelopmental disorders, by expanding the abundance of species that synthesize the metabolite's precursor.IMPORTANCE Several previous studies have pointed to environmental chemical exposure during windows of development as a contributing factor in neurodevelopmental disorders and correlated these disorders with microbiota dysbiosis; however, little is known about how the chemicals specifically alter the microbiota to interfere with development. The findings reported in this paper unambiguously establish that a pollutant linked with neurodevelopmental disorders can directly modify the microbiota to promote the production of a potentially toxic metabolite (p-cresol) that has also been correlated with neurodevelopmental disorders. Furthermore, we used a novel modeling strategy to identify the responsible enzymes and bacterial sources of this metabolite. To the best of our knowledge, the present study is the first to characterize the functional consequence of phthalate exposure on a developed microbiota. Our results suggest that specific bacterial pathways could be developed as diagnostic and therapeutic targets against health risks posed by ingestion of environmental chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...