Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 157(6): 1850-1860, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33078390

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) receptor (PAC1R) is a class B Gprotein-coupled receptor (GPCR) that is widely expressed in the human body and is involved in neuronal differentiation. As class B GPCRs are known to form heterocomplexes with family members, we hypothesized that PAC1R mediates neuronal differentiation through interaction with a class B GPCR. We used the BRET assay to identify potential interactions between PAC1R and 11 class B GPCRs. Gastric inhibitory polypeptide receptor (GIPR) and secretin receptor were identified as putative binding partners of PAC1R. The effect of heterocomplex formation by PAC1R on receptor activation was evaluated with the cyclic (c)AMP, luciferase reporter, and calcium signaling assays; and the effects on receptor internalization and subcellular localization were examined by confocal microscopy. The results suggested he PAC1R/GIPR heterocomplex suppressed signaling events downstream of PAC1R, including cAMP production, serum response element and calcium signaling, and ß-arrestin recruitment. Protein-protein interaction was analyzed in silico, and induction of neuronal differentiation by the PAC1R heterocomplex was assessed in SH-SY5Y neuronal cells by measure the morphological changes and marker genes expression by real-time quantitative PCR and western blot. Over-expression of GIPR suppressed PACAP/PAC1R-mediated neuronal differentiation and the differentiation markers expression in SH-SY5Y cells. GIPR regulates neuronal differentiation through heterocomplex formation with PAC1R.


Assuntos
Diferenciação Celular/fisiologia , Neurônios/metabolismo , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptores dos Hormônios Gastrointestinais/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética
3.
Peptides ; 120: 170019, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339828

RESUMO

It is widely acknowledged that kisspeptin and its receptor Kiss1R play central regulatory roles in the hypothalamus-pituitary-gonad (HPG) axis and reproduction. Mutations of KISS1 and KISS1R lead to disorders associated with pubertal development, such as central precocious puberty (CPP) and idiopathic hypogonadotropic hypogonadism (IHH). This review focuses on KISS1 and KISS1R mutations found in CPP and IHH and its purposes are twofold: Firstly, based on the mutations found in KISS1 and KISS1R, this review provides insights into the precise mechanism of kisspeptin and the kisspeptin/Kiss1R pathway in the reproductive axis and in puberty. Secondly, G protein-coupled receptors (GPCRs) are known to share highly conserved structural motifs; therefore, knowledge of mutations found at different structural domains of Kiss1R in the diseased state, and how they affect Kiss1R function can be used to decipher GPCR domain function.


Assuntos
Sistema Hipotálamo-Hipofisário , Kisspeptinas , Mutação , Puberdade Precoce , Receptores de Kisspeptina-1 , Estudos Clínicos como Assunto , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Puberdade Precoce/genética , Puberdade Precoce/metabolismo , Puberdade Precoce/patologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
4.
J Biol Chem ; 291(33): 17332-44, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27330080

RESUMO

Complexes of secretin (SecR) and angiotensin 1a (Atr1a) receptors have been proposed to be functionally important in osmoregulation, providing an explanation for overlapping and interdependent functions of hormones that bind and activate different classes of GPCRs. However, the nature of these cross-class complexes has not been well characterized and their signaling properties have not been systematically explored. We now use competitive inhibition of receptor bioluminescence resonance energy transfer and bimolecular fluorescence complementation to establish the dominant functionally important state as a symmetrical homodimeric form of SecR decorated by monomeric Atr1a, interacting through lipid-exposed faces of Atr1a TM1 and TM4. Conditions increasing prevalence of this complex exhibited negative allosteric modulatory impact on secretin-stimulated cAMP responses at SecR. In contrast, activating Atr1a with full agonist in such a complex exhibited a positive allosteric modulatory impact on the same signaling event. This modulation was functionally biased, with secretin-stimulated calcium responses unaffected, whereas angiotensin-stimulated calcium responses through the complex were reduced or absent. Further supporting this interpretation, Atr1a with mutations of lipid-exposed faces of TM1 and TM4 that did not affect its ability to bind or signal, could be expressed in the same cell as SecR, yet not exhibit either the negative or positive allosteric impact on cAMP observed with the inactive or activated states of wild type Atr1a on function, and not interfere with angiotensin-stimulated calcium responses like complexes with Atr1a. This may provide a more selective means of exploring the physiologic functional impact of this cross-class receptor complex without interfering with the function of either component receptor.


Assuntos
Sinalização do Cálcio/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Células HEK293 , Humanos , Camundongos , Mutação , Domínios Proteicos , Estrutura Quaternária de Proteína , Ratos , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/genética , Relação Estrutura-Atividade
5.
Biochim Biophys Acta ; 1859(7): 922-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27080132

RESUMO

A growing body of evidence suggests that secretin (SCT) is an important element in the osmoregulatory pathway. It is interesting to note that both SCT and its receptor (SCTR) gene are activated upon hyperosmolality in the kidney. However, the precise molecular mechanisms underlying the induction of the SCTR gene expression in response to changes in osmolality have yet to be clarified. Detailed DNA sequence analysis of the promoter regions of the SCTR gene reveals the presence of multiple osmotic response elements (ORE). The ORE is the binding site of a key osmosensitive transactivator, namely, the nuclear factor of activated T-cells 5 (NFAT5). SCTR and NFAT5 are co-expressed in the kidney cortex and medulla collecting duct cells. We therefore hypothesize that NFAT5 is responsible for modulating SCTR expression in hypertonic environments. In this study, we found hypertonicity stimulates the promoter activities and endogenous gene expression of SCTR in mouse kidney cortex collecting duct cells (M1) and inner medulla collecting duct cells (mIMCD3). The overexpression and silencing of NFAT5 further confirmed it to be responsible for the up-regulation of the SCTR gene under hypertonic conditions. A significant increase in the interaction between NFAT5 and the SCTR promoter was also observed following chromatin immunoprecipitation assay. In vivo, osmotic stress up-regulates the SCTR gene in the kidney cortex and medulla of wild-type mice, but does not do so in NFAT5(+/-) animals. Hence, this study provides comprehensive information on how NFAT5 regulates SCTR expression in different osmotic environments.


Assuntos
Soluções Hipertônicas/farmacologia , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Fatores de Transcrição/genética
6.
Mol Biol Evol ; 32(8): 2048-59, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25841489

RESUMO

Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand-receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand-receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates.


Assuntos
Cefalocordados/genética , Evolução Molecular , Glucagon/genética , Hormônio Paratireóideo/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Animais , Cefalocordados/metabolismo , Glucagon/metabolismo , Humanos , Anfioxos , Hormônio Paratireóideo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Xenopus
7.
Artigo em Inglês | MEDLINE | ID: mdl-25806022

RESUMO

The presence of the parathyroid hormones in vertebrates, including PTH, PTH-related peptide (PTHrP), and tuberoinfundibular peptide of 39 residues (TIP39), has been proposed to be the result of two rounds of whole genome duplication in the beginning of vertebrate diversification. Bioinformatics analyses, in particular chromosomal synteny study and the characterization of the PTH ligands and their receptors from various vertebrate species, provide evidence that strongly supports this hypothesis. In this mini-review, we summarize recent advances in studies regarding the molecular evolution and physiology of the PTH ligands and their receptors, with particular focus on non-mammalian vertebrates. In summary, the PTH family of peptides probably predates early vertebrate evolution, indicating a more ancient existence as well as a function of these peptides in invertebrates.

8.
J Mol Endocrinol ; 52(3): T1-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24868104

RESUMO

In mammals, secretin is a 27-amino acid peptide that was first studied in 1902 by Bayliss and Starling from the extracts of the jejunal mucosa for its ability to stimulate pancreatic secretion. To date, secretin has only been identified in tetrapods, with the earliest diverged secretin found in frogs. Despite being the first hormone discovered, secretin's evolutionary origin remains enigmatic, it shows moderate sequence identity in nonmammalian tetrapods but is highly conserved in mammals. Current hypotheses suggest that although secretin has already emerged before the divergence of osteichthyans, it was lost in fish and retained only in land vertebrates. Nevertheless, the cognate receptor of secretin has been identified in both actinopterygian fish (zebrafish) and sarcopterygian fish (lungfish). However, the zebrafish secretin receptor was shown to be nonbioactive. Based on the present information that the earliest diverged bioactive secretin receptor was found in lungfish, and its ability to interact with both vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potently suggested that secretin receptor was descended from a VPAC-like receptor gene before the Actinopterygii-Sarcopterygii split in the vertebrate lineage. Hence, secretin and secretin receptor have gone through independent evolutionary trajectories despite their concurrent emergence post-2R. A functional secretin-secretin receptor axis has probably emerged in the amphibians. Although the pleiotropic actions of secretin are well documented in the literature, only limited information of its physiological functions in nonmammalian tetrapods have been reported. To decipher the structural and functional divergence of secretin and secretin receptor, functional characterization of the ligand-receptor pair in nonmammals would be the next perspective for investigation.


Assuntos
Evolução Molecular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Peixes , Humanos , Jejuno/enzimologia , Dados de Sequência Molecular , Pâncreas/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Secretina/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
9.
FASEB J ; 28(6): 2632-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24599969

RESUMO

Angiotensin (ANGII) and secretin (SCT) share overlapping, interdependent osmoregulatory functions in brain, where SCT peptide/receptor function is required for ANGII action, yet the molecular basis is unknown. Since receptors for these peptides (AT1aR, SCTR) are coexpressed in osmoregulatory centers, a possible mechanism is formation of a cross-class receptor heterocomplex. Here, we demonstrate such a complex and its functional importance to modulate signaling. Association of AT1aR with SCTR reduced ability of SCT to stimulate cyclic adenosine monophosphate (cAMP), with signaling augmented in presence of ANGII or constitutively active AT1aR. Several transmembrane (TM) peptides of these receptors were able to affect their conformation within complexes, reducing receptor BRET signals. AT1aR TM1 affected only formation and activity of the heterocomplex, without effect on homomers of either receptor, and reduced SCT-stimulated cAMP responses in cells expressing both receptors. This peptide was active in vivo by injection into mouse lateral ventricle, thereby suppressing water-drinking behavior after hyperosmotic shock, similar to SCTR knockouts. This supports the interpretation that active conformation of AT1aR is a key modulator of cAMP responses induced by SCT stimulation of SCTR. The SCTR/AT1aR complex is physiologically important, providing differential signaling to SCT in settings of hyperosmolality or food intake, modulated by differences in levels of ANGII.


Assuntos
Angiotensina II/fisiologia , AMP Cíclico/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Secretina/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Proteínas de Membrana/fisiologia , Camundongos , Pressão Osmótica/fisiologia , Multimerização Proteica , Estrutura Quaternária de Proteína/fisiologia , Receptor Tipo 1 de Angiotensina/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores dos Hormônios Gastrointestinais/agonistas
10.
PLoS One ; 8(1): e53482, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308232

RESUMO

The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2) in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2) in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2) was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2) had the highest expression in brain, and interestingly, X. laevis(GHRHR2) also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2), which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.


Assuntos
Cromossomos/genética , Peixes/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Xenopus/genética , Animais , Evolução Biológica , Cálcio/metabolismo , Galinhas/genética , Mapeamento Cromossômico , Cromossomos/química , AMP Cíclico/metabolismo , Feminino , Peixes/metabolismo , Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/genética , Masculino , Especificidade de Órgãos , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/classificação , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/química , Receptores de Hormônios Reguladores de Hormônio Hipofisário/classificação , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Especificidade da Espécie , Xenopus/metabolismo , Peixe-Zebra/genética
11.
Biochim Biophys Acta ; 1829(2): 231-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23168245

RESUMO

In the present study, a functional neuron restrictive silencer element (NRSE) was initially identified in the 5' flanking region (-83 to -67, relative to ATG) of human secretin receptor (hSCTR) gene by promoter assays coupled with scanning mutation analyses. The interaction of neuron restrictive silencer factor (NRSF) with this motif was later indicated via gel mobility shift and ChIP assays. The silencing activity of NRSF was confirmed by over-expression and also by shRNA knock-down of endogenous NRSF. These studies showed an inverse relationship between the expression levels of NRSF and hSCTR in the cells. As hSCTR gene was previously shown to be controlled by two GC-boxes which are regulated by the ratio of Sp1 to Sp3, in the present study, the functional interactions of NRSF and Sp proteins to regulate hSCTR gene was investigated. By co-immunoprecipitation assays, we found that NRSF could be co-precipitated with Sp1 as well as Sp3 in PANC-1 cells. Interestingly, co-expressions of these factors showed that NRSF could suppress Sp1-mediated, but not Sp3-mediated, transactivation of hSCTR. Taken together, we propose here that the down-regulatory effects of NRSF on hSCTR gene expression are mediated via its suppression on Sp1-mediated transactivation.


Assuntos
Receptores Acoplados a Proteínas G , Receptores dos Hormônios Gastrointestinais , Proteínas Repressoras , Fator de Transcrição Sp1/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Células PC12 , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/metabolismo , Ativação Transcricional
12.
PLoS One ; 7(9): e44691, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957100

RESUMO

VIP and PACAP are pleiotropic peptides belonging to the secretin superfamily of brain-gut peptides and interact specifically with three receptors (VPAC(1), PAC(1) and VPAC(2)) from the class II B G protein-coupled receptor family. There is immense interest regarding their molecular evolution which is often described closely alongside gene and/or genome duplications. Despite the wide array of information available in various vertebrates and one invertebrate the tunicate, their evolutionary origins remain unresolved. Through searches of genome databases and molecular cloning techniques, the first lamprey VIP/PACAP ligands and VPAC receptors are identified from the Japanese lamprey. In addition, two VPAC receptors (VPACa/b) are identified from inshore hagfish and ligands predicted for sea lamprey. Phylogenetic analyses group these molecules into their respective PHI/VIP, PRP/PACAP and VPAC receptor families and show they resemble ancestral forms. Japanese lamprey VIP/PACAP peptides synthesized were tested with the hagfish VPAC receptors. hfVPACa transduces signal via both adenylyl cylase and phospholipase C pathways, whilst hfVPACb was only able to transduce through the calcium pathway. In contrast to the widespread distribution of VIP/PACAP ligands and receptors in many species, the agnathan PACAP and VPAC receptors were found almost exclusively in the brain. In situ hybridisation further showed their abundance throughout the brain. The range of VIP/PACAP ligands and receptors found are highly useful, providing a glimpse into the evolutionary events both at the structural and functional levels. Though representative of ancestral forms, the VIP/PACAP ligands in particular have retained high sequence conservation indicating the importance of their functions even early in vertebrate evolution. During these nascent stages, only two VPAC receptors are likely responsible for eliciting functions before evolving later into specific subtypes post-Agnatha. We also propose VIP and PACAP's first functions to predominate in the brain, evolving alongside the central nervous system, subsequently establishing peripheral functions.


Assuntos
Lampreias/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células CHO , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Cordados , Cricetinae , DNA Complementar/metabolismo , Genoma , Hibridização In Situ , Ligantes , Dados de Sequência Molecular , Peptídeos/química , Filogenia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Distribuição Tecidual , Vertebrados
13.
PLoS One ; 7(6): e39913, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761926

RESUMO

Osmoregulation via maintenance of water and salt homeostasis is a vital process. In the brain, a functional secretin (SCT) and secretin receptor (SCTR) axis has recently been shown to mediate central actions of angiotensin II (ANGII), including initiation of water intake and stimulation of vasopressin (VP) expression and release. In this report, we provide evidence that estrogen-related receptor α (ERRα, NR3B1), a transcription factor mainly involved in metabolism, acts as an upstream activator of the SCT gene. In vitro studies using mouse hypothalamic cell line N-42 show that ERRα upregulates SCT promoter and gene expression. More importantly, knockdown of endogenous ERRα abolishes SCT promoter activation in response to hypertonic and ANGII stimulations. In mouse brain, ERRα coexpresses with SCT in various osmoregulatory brain regions, including the lamina terminalis and the paraventricular nucleus of the hypothalamus, and its expression is induced by hyperosmotic and ANGII treatments. Based on our data, we propose that both the upregulation of ERRα and/or the increased binding of ERRα to the mouse SCT promoter are two possible mechanisms for the elevated SCT expression upon hyperosmolality and central ANGII stimulation.


Assuntos
Angiotensina II/farmacologia , Receptor alfa de Estrogênio/fisiologia , Secretina/metabolismo , Regulação para Cima/fisiologia , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imuno-Histoquímica , Injeções Intraventriculares , Camundongos , Reação em Cadeia da Polimerase , Ratos
14.
Artigo em Inglês | MEDLINE | ID: mdl-23316183

RESUMO

Dimerization or oligomerization of G protein-coupled receptors (GPCRs) are known to modulate receptor functions in terms of ontogeny, ligand-oriented regulation, pharmacological diversity, signal transduction, and internalization. Class B GPCRs are receptors to a family of hormones including secretin, growth hormone-releasing hormone, vasoactive intestinal polypeptide and parathyroid hormone, among others. The functional implications of receptor dimerization have extensively been studied in class A GPCRs, while less is known regarding its function in class B GPCRs. This article reviews receptor oligomerization in terms of the early evidence and current understanding particularly of class B GPCRs.

15.
Gen Comp Endocrinol ; 173(3): 405-10, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21703272

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP)-related peptide (PRP) is a peptide encoded with PACAP in the same precursor protein. Non-mammalian PRPs were previously termed growth hormone-releasing hormone (GHRH)-like peptide, and was regarded as the mammalian GHRH homologue in non-mammalian vertebrates until the discovery of authentic GHRH genes in teleosts and amphibians. Although a highly specific receptor for PRP, which is lost in mammals, is present in non-mammals, a clear function of PRP in vertebrates remains unknown. Using goldfish as a model, here we show the expression of PRP and its cognate receptor in the brain-pituitary-gonadal (BPG) axis, thus suggesting a function of goldfish (gf) PRP in regulating reproduction. We found that gfPRP controls the expression of reproductive hormones in the brain, pituitary and ovary. Goldfish PRP exerts stimulatory effects on the expression of salmon gonadotropin-releasing hormone (sGnRH) in the brain, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in pituitary primary culture cells, but inhibits the expression of LH in the ovary. Using the same technique, we showed that gfPRP did not alter the mRNA level of growth hormone in the pituitary primary culture. In summary, we have discovered the first function of vertebrate PRP in regulating reproduction, which provides a new research direction in studying the neuroendocrine control of reproduction not only in teleosts, but also in other non-mammalian vertebrates.


Assuntos
Proteínas de Peixes/fisiologia , Carpa Dourada/metabolismo , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Precursores de Proteínas/fisiologia , Animais , Encéfalo/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/genética , Carpa Dourada/fisiologia , Masculino , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo
16.
PLoS One ; 6(4): e19384, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559418

RESUMO

At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.


Assuntos
Evolução Biológica , Evolução Molecular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Secretina/genética , Animais , Clonagem Molecular , Feminino , Humanos , Ligantes , Masculino , Modelos Biológicos , Orexinas , Ranidae , Fatores de Tempo , Distribuição Tecidual , Xenopus laevis
17.
Ann N Y Acad Sci ; 1220: 23-33, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21388401

RESUMO

The functional role of secretin outside the gastrointestinal system has been a mystery to endocrinologists for many years. With the availability of secretin- and secretin receptor-knockout models and the advances of electrophysiological and immunohistochemical techniques, we are now in a good position to explore the functions of secretin outside the gastrointestinal system. There is growing evidence to support that secretin works pleiotropically at multiple levels in our body. In this paper, we review the recent findings regarding the physiological effects of secretin on extragastrointestinal sites including the cerebellum, the hippocampus, and the hypothalamus-pituitary-kidney axis. To understand the mechanisms underlying the site-specific expression of secretin and secretin receptors in the central nervous system, we also discuss the transcriptional regulation of secretin and secretin receptor genes in neuronal cell lines.


Assuntos
Regulação da Expressão Gênica , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Secretina/genética , Transcrição Gênica , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular
18.
Gen Comp Endocrinol ; 171(2): 124-30, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21216246

RESUMO

Although recently discovered, orexins have been rapidly established as important neuropeptides in regulating physiological processes including food intake, sleep/wake cycles and reproduction through binding to two class B G protein-coupled receptors (OX1R and OX2R). To date, a handful of sequences for orexins and their receptors ranging from fish to mammalian species have been identified, allowing a glimpse into their evolution. Structurally, the genetic and molecular organization of the peptides and receptors amongst vertebrates are highly similar, underlining the strong evolutionary pressure that has been exerted to preserve structure and ultimately function. Furthermore, the absence of invertebrate orexin-like sequences suggests early vertebrates as the origin from which orexins evolved. With respect to the receptors, OX2R is probably evolutionary more ancient whilst OX1R is specific to mammalian species and evolved only during this later lineage. In common to all vertebrates studied, the hypothalamus remains to be the key brain region in which orexinergic neurons and fibers are localized in, establishing orexin to be an important player in regulating physiological processes especially those related to food intake and energy metabolism. To allow better understanding of the evolution of orexins and their receptors, this review will provide a comparative approach to their structures and functions in vertebrates.


Assuntos
Peixes/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mamíferos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Evolução Molecular , Peixes/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Dados de Sequência Molecular , Neuropeptídeos/genética , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Homologia de Sequência de Aminoácidos
19.
FASEB J ; 24(12): 5024-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20739612

RESUMO

Fluid balance is critical to life and hence is tightly controlled in the body. Angiotensin II (ANGII), one of the most important components of this regulatory system, is recognized as a dipsogenic hormone that stimulates vasopressin (VP) expression and release. However, detailed mechanisms regarding how ANGII brings about these changes are not fully understood. In the present study, we show initially that the osmoregulatory functions of secretin (SCT) in the brain are similar to those of ANGII in mice and, more important, we discovered the role of SCT as the link between ANGII and its downstream effects. This was substantiated by the use of two knockout mice, SCTR(-/-) and SCT(-/-), in which we show the absence of an intact SCT/secretin receptor (SCTR) axis resulted in an abolishment or much reduced ANGII osmoregulatory functions. By immunohistochemical staining and in situ hybridization, the proteins and transcripts of SCT and its receptor are found in the paraventricular nucleus (PVN) and lamina terminalis. We propose that SCT produced in the circumventricular organs is transported and released in the PVN to stimulate vasopressin expression and release. In summary, our findings identify SCT and SCTR as novel elements of the ANGII osmoregulatory pathway in maintaining fluid balance in the body.


Assuntos
Angiotensina II/farmacologia , Secretina/metabolismo , Secretina/farmacologia , Animais , Ingestão de Líquidos/efeitos dos fármacos , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Reação em Cadeia da Polimerase , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/genética , Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
20.
Ann N Y Acad Sci ; 1200: 15-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20633130

RESUMO

Glucagon and the glucagon-like peptides (GLP-1 and GLP-2) share a common evolutionary origin and are triplication products of an ancestral glucagon exon. In mammals, a standard scenario is found where only a single proglucagon-derived peptide set exists. However, fish and amphibians have either multiple proglucagon genes or exons that are likely resultant of duplication events. Through phylogenetic analysis and examination of their respective functions, the proglucagon ligand-receptor pairs are believed to have evolved independently before acquiring specificity for one another. This review will provide a comprehensive overview of current knowledge of proglucagon-derived peptides and receptors, with particular focus on fish and amphibian species.


Assuntos
Anfíbios/genética , Evolução Biológica , Peixes/genética , Peptídeos/genética , Proglucagon/genética , Receptores de Superfície Celular/genética , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...