Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Psychiatry ; 65(1): e1, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34937587

RESUMO

BACKGROUND: Support vector machines (SVMs) based on brain-wise functional connectivity (FC) have been widely adopted for single-subject prediction of patients with schizophrenia, but most of them had small sample size. This study aimed to evaluate the performance of SVMs based on a large single-site dataset and investigate the effects of demographic homogeneity and training sample size on classification accuracy. METHODS: The resting functional Magnetic Resonance Imaging (fMRI) dataset comprised 220 patients with schizophrenia and 220 healthy controls. Brain-wise FCs was calculated for each participant and linear SVMs were developed for automatic classification of patients and controls. First, we evaluated the SVMs based on all participants and homogeneous subsamples of men, women, younger (18-30 years), and older (31-50 years) participants by 10-fold nested cross-validation. Then, we hold out a fixed test set of 40 participants (20 patients and 20 controls) and evaluated the SVMs based on incremental training sample sizes (N = 40, 80, …, 400). RESULTS: We found that the SVMs based on all participants had accuracy of 85.05%. The SVMs based on male, female, young, and older participants yielded accuracy of 84.66, 81.56, 80.50, and 86.13%, respectively. Although the SVMs based on older subsamples had better performance than those based on all participants, they generalized poorly to younger participants (77.24%). For incremental training sizes, the classification accuracy increased stepwise from 72.6 to 83.3%, with >80% accuracy achieved with sample size >240. CONCLUSIONS: The findings indicate that SVMs based on a large dataset yield high classification accuracy and establish models using a large sample size with heterogeneous properties are recommended for single subject prediction of schizophrenia.


Assuntos
Esquizofrenia , Encéfalo , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Descanso , Esquizofrenia/diagnóstico por imagem , Máquina de Vetores de Suporte
2.
Artigo em Inglês | MEDLINE | ID: mdl-34847036

RESUMO

Steady-state visual evoked potential (SSVEP) has been used to implement brain-computer interface (BCI) due to its advantages of high information transfer rate (ITR) and high accuracy. In recent years, owing to the developments of head-mounted device (HMD), the HMD has become a popular device to implement SSVEP-based BCI. However, an HMD with fixed frame rate only can flash at its subharmonic frequencies which limits the available number of stimulation frequencies for SSVEP-based BCI. In order to increase the number of available commands for SSVEP-based BCI, we proposed a phase-approaching (PA) method to generate visual stimulation sequences at user-specified frequency on an HMD. The flickering sequence generated by our PA method (PAS sequence) tries to approximate user-specified stimulation frequency by means of minimizing the difference of accumulated phases between our PAS sequence and the ideal wave of user-specified frequency. The generated sequence of PA method determines the brightness state for each frame to approach the accumulated phase of the ideal wave. The SSVEPs evoked from stimulators, driven by PAS sequences, were analyzed using canonical correlation analysis (CCA) to identify user's gazed target. In this study, a six-command SSVEP-based BCI was designed to operate a flying drone. The ITR and detection accuracy are 36.84 bits/min and 93.30%, respectively.


Assuntos
Interfaces Cérebro-Computador , Realidade Virtual , Eletroencefalografia/métodos , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa/métodos
3.
IEEE J Biomed Health Inform ; 25(7): 2801-2810, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33385314

RESUMO

Named Entity Recognition (NER) is a natural language processing task for recognizing named entities in a given sentence. Chinese NER is difficult due to the lack of delimited spaces and conventional features for determining named entity boundaries and categories. This study proposes the ME-MGNN (Multiple Embeddings enhanced Multi-Graph Neural Networks) model for Chinese NER in the healthcare domain. We integrate multiple embeddings at different granularities from the radical, character to word levels for an extended character representation, and this is fed into multiple gated graph sequence neural networks to identify named entities and classify their types. The experimental datasets were collected from health-related news, digital health magazines and medical question/answer forums. Manual annotation was conducted for a total of 68,460 named entities across 10 entity types (body, symptom, instrument, examination, chemical, disease, drug, supplement, treatment and time) in 30,692 sentences. Experimental results indicated our ME-MGNN model achieved an F1-score result of 75.69, outperforming previous methods. In practice, a series of model analysis implied that our method is effective and efficient for Chinese healthcare NER.


Assuntos
Processamento de Linguagem Natural , Redes Neurais de Computação , China , Atenção à Saúde , Humanos , Idioma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...