Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500170

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Hiperóxia , MicroRNAs , Ratos , Animais , Células Cultivadas , Hiperóxia/metabolismo , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vesículas Extracelulares/fisiologia , Fibrose , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo
2.
Adv Sci (Weinh) ; 10(33): e2302622, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847907

RESUMO

Regenerative medicine in tissue engineering often relies on stem cells and specific growth factors at a supraphysiological dose. These approaches are costly and may cause severe side effects. Herein, therapeutic small extracellular vesicles (t-sEVs) endogenously loaded with a cocktail of human vascular endothelial growth factor A (VEGF-A) and human bone morphogenetic protein 2 (BMP-2) mRNAs within a customized injectable PEGylated poly (glycerol sebacate) acrylate (PEGS-A) hydrogel for bone regeneration in rats with challenging femur critical-size defects are introduced. Abundant t-sEVs are produced by a facile cellular nanoelectroporation system based on a commercially available track-etched membrane (TM-nanoEP) to deliver plasmid DNAs to human adipose-derived mesenchymal stem cells (hAdMSCs). Upregulated microRNAs associated with the therapeutic mRNAs are enriched in t-sEVs for enhanced angiogenic-osteogenic regeneration. Localized and controlled release of t-sEVs within the PEGS-A hydrogel leads to the retention of therapeutics in the defect site for highly efficient bone regeneration with minimal low accumulation in other organs.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Ratos , Humanos , Animais , RNA Mensageiro/genética , Regeneração Óssea/genética , Hidrogéis/farmacologia
3.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904441

RESUMO

Biodegradable microneedles with a drug delivery channel have enormous potential for consumers, including use in chronic disease, vaccines, and beauty applications, due to being painless and scarless. This study designed a microinjection mold to fabricate a biodegradable polylactic acid (PLA) in-plane microneedle array product. In order to ensure that the microcavities could be well filled before production, the influences of the processing parameters on the filling fraction were investigated. The results indicated that the PLA microneedle can be filled under fast filling, higher melt temperature, higher mold temperature, and higher packing pressure, although the dimensions of the microcavities were much smaller than the base portion. We also observed that the side microcavities filled better than the central ones under certain processing parameters. However, this does not mean that the side microcavities filled better than the central ones. The central microcavity was filled when the side microcavities were not, under certain conditions in this study. The final filling fraction was determined by the combination of all parameters, according to the analysis of a 16 orthogonal latin hypercube sampling analysis. This analysis also showed the distribution in any two-parameter space as to whether the product was filled entirely or not. Finally, the microneedle array product was fabricated according to the investigation in this study.

4.
Nanoscale ; 15(8): 4080-4089, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36744418

RESUMO

Nanochannel electroporation (NEP) is a new technology for cell transfection, which provides superior gene delivery and cell viability to conventional bulk electroporation (BEP). In NEP, the cells laid on a porous substrate are subjected to an asymmetric electric field which induces asymmetric membrane poration. The cell membrane near the channel outlet ('transfection membrane') is porated intensely, allowing direct delivery of genetic materials, while the rest of the cell membrane ('non-transfection membrane') remains much less perturbed for low cellular damage. In this work, the transfection window of NEP for the delivery of different sized molecules is systematically investigated. The results show that small molecules (∼0.6 kDa) can be delivered into cells at a relatively lower voltage without significantly impacting the non-transfection membrane. To deliver larger molecules (∼6 kDa), a higher working voltage is required at the cost of cell viability due to more severe damage of the non-transfection membrane. Through numerical analysis of both transient transmembrane potential (t-TMP) and dynamic transmembrane potential (d-TMP), here we show that the membrane damage on both transfection and non-transfection sides of the cell membrane can be predicted. The agreement between experimental results and numerical analysis provides a comprehensive understanding of cell membrane damage and cargo delivery in NEP.


Assuntos
Terapia com Eletroporação , Eletroporação , Eletroporação/métodos , Transfecção , Membrana Celular , Técnicas de Transferência de Genes
5.
Nat Biomed Eng ; 7(7): 887-900, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36635419

RESUMO

The success of messenger RNA therapeutics largely depends on the availability of delivery systems that enable the safe, effective and stable translation of genetic material into functional proteins. Here we show that extracellular vesicles (EVs) produced via cellular nanoporation from human dermal fibroblasts, and encapsulating mRNA encoding for extracellular-matrix α1 type-I collagen (COL1A1) induced the formation of collagen-protein grafts and reduced wrinkle formation in the collagen-depleted dermal tissue of mice with photoaged skin. We also show that the intradermal delivery of the mRNA-loaded EVs via a microneedle array led to the prolonged and more uniform synthesis and replacement of collagen in the dermis of the animals. The intradermal delivery of EV-based COL1A1 mRNA may make for an effective protein-replacement therapy for the treatment of photoaged skin.


Assuntos
Derme , Vesículas Extracelulares , Humanos , Camundongos , Animais , Derme/metabolismo , RNA Mensageiro/metabolismo , Colágeno/metabolismo , Pele/metabolismo , Vesículas Extracelulares/metabolismo
6.
Cell Rep ; 40(3): 111115, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858552

RESUMO

The existence of "leukemia-initiating cells" (LICs) in chronic lymphocytic leukemia (CLL) remains controversial due to the difficulty in isolating and identifying the tumor-initiating cells. Here, we demonstrate a microchannel electroporation (MEP) microarray that injects RNA-detecting probes into single live cells, allowing the imaging and characterization of heterogeneous LICs by intracellular RNA expression. Using limited-cell FACS sequencing (LC-FACSeq), we can detect and monitor rare live LICs during leukemogenesis and characterize their differential drug sensitivity. Disease-associated mutation accumulation in developing B lymphoid but not myeloid lineage in CLL patient hematopoietic stem cells (CLL-HSCs), and development of independent clonal CLL-like cells in murine patient-derived xenograft models, suggests the existence of CLL LICs. Furthermore, we identify differential protein ubiquitination and unfolding response signatures in GATA2high CLL-HSCs that exhibit increased sensitivity to lenalidomide and resistance to fludarabine compared to GATA2lowCLL-HSCs. These results highlight the existence of therapeutically targetable disease precursors in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , RNA/metabolismo
7.
Curr Med Chem ; 26(13): 2377-2388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28875840

RESUMO

BACKGROUND: Stimuli-responsive carriers are a class of drug delivery systems which can change their physicochemical properties and/or structural conformations in response to specific stimuli. Although passive and active drug targeting has proved to reduce the side effects to normal cells, controlled intracellular drug release should be included in drug carriers to enhance the bioavailability of drugs at the disease site. METHODS: This review focuses on several recent advances in the development of stimuli-responsive carriers for spatially and temporally controlled release of therapeutic agents in response to intracellular stimuli, such as pH, redox potential, reactive oxygen species, enzyme and temperature. RESULTS: Among the different types of stimuli, pH-responsive carriers have been mostly used to design intracellular controlled release system. The sharp difference of redox potential between inside and outside cells is attributed to the high variation in concentration of glutathione. ROS-responsive carriers are gaining much attention for selective release of therapeutic agents by sensing oxidative conditions at different levels. The advantages of utilizing enzymes as the trigger of stimuli-responsive carriers include diverse types of enzymes, high selectivity of enzyme catalyzed reactions and the mild reaction conditions involved. Abnormal temperature is another unique stimulus and has been widely used to trigger controlled release of drug in tumor cells. CONCLUSION: Recent developments highlighted in this paper demonstrate that stimuli-responsive carriers possess great potential as a new platform for controlled intracellular drug release.


Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/química , Neoplasias/tratamento farmacológico , Oxirredução , Espécies Reativas de Oxigênio/química , Temperatura
8.
Biomaterials ; 183: 20-29, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30145409

RESUMO

Detection of specific extracellular RNAs has been developed for non-invasive cancer diagnosis. However, accurate and efficient identification of RNAs with single-point mutation in cancer cells-derived extracellular vesicles (EVs) is challenging. Herein, we present a unique overhang molecular beacon with internal dye (Ohi-MB) with a stable hairpin structure, fast hybridization kinetics and single mismatch specificity. Ohi-MBs are encapsulated in cationic lipoplex nanoparticles (CLNs) that are tethered on a gold coated glass slide as a chip, which can capture circulating EVs and detect encapsulated target RNAs in-situ in a single step. The capability of detection of single-point mutation by CLN-Ohi-MB is demonstrated in artificial EVs and cancer cells. This CLN-Ohi-MB biochip could quantify single-point mutations in KRAS mRNA (G12C, G12D, G12V) in pancreatic cancer cell-derived EVs and single-point mutations in EGFR mRNA (L858R and T790M) in lung cancer cell-derived EVs with high specificity, not achievable by conventional molecular probes. We show that CLN-Ohi-MB biochip could selectively and sensitively identify single-point mutations in KRAS mRNA in human serum EVs, distinguishing pancreatic cancer patients with different mutations.


Assuntos
Vesículas Extracelulares/metabolismo , Lipídeos/química , Nanopartículas/química , Oligonucleotídeos/química , Mutação Puntual , RNA Mensageiro/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Cinética , Neoplasias Pulmonares/genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Imagem Individual de Molécula/métodos
9.
Xenotransplantation ; 24(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28718514

RESUMO

BACKGROUND: Survival and longevity of xenotransplants depend on immune function and ability to integrate energy metabolism between cells from different species. However, mechanisms for interspecies cross talk in energy metabolism are not well understood. White adipose tissue stores energy and is capable of mobilization and dissipation of energy as heat (thermogenesis) by adipocytes expressing uncoupling protein 1 (Ucp1). Both pathways are under the control of vitamin A metabolizing enzymes. Deficient retinoic acid production in aldehyde dehydrogenase 1 A1 (Aldh1a1) knockout adipocytes (KO) inhibits adipogenesis and increases thermogenesis. Here we test the role Aldh1a1 in regulation of lipid metabolism in xenocultures. METHODS: Murine wide-type (WT) and KO pre-adipocytes were encapsulated into a poly-L-lysine polymer that allows exchange of humoral factors <32kD via nanopores. Encapsulated murine adipocytes were co-incubated with primary differentiated canine adipocytes. Then, expression of adipogenic and thermogenic genes in differentiated canine adipocytes was detected by real-time polymerase chain reaction (PCR). The regulatory factors in WT and KO cells were identified by comparison of secretome using proteomics and in transcriptome by gene microarray. RESULTS: Co-culture of encapsulated mouse KO vs WT adipocytes increased expression of peroxisome proliferator-activated receptor gamma (Pparg), but reduced expression of its target genes fatty acid binding protein 4 (Fabp4), and adipose triglyceride lipase (Atgl) in canine adipocytes, suggesting inhibition of PPARγ activation. Co-culture with KO adipocytes also induced expression of Ucp1 in canine adipocytes compared to expression in WT adipocytes. Cumulatively, murine KO compared to WT adipocytes decreased lipid accumulation in canine adipocytes. Comparative proteomics revealed significantly higher levels of vitamin A carriers, retinol binding protein 4 (RBP4), and lipokalin 2 (LCN2) in KO vs WT adipocytes. CONCLUSIONS: Our data demonstrate the functional exchange of regulatory factors between adipocytes from different species for regulation of energy balance. RBP4 and LCN2 appear to be involved in the transport of retinoids for regulation of lipid accumulation and thermogenesis in xenocultures. While the rarity of thermogenic adipocytes in humans and dogs precludes their use for autologous transplantation, our study demonstrates that xenotransplantation of engineered cells could be a potential solution for the reduction in obesity in dogs and a strategy for translation to patients.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Isoenzimas/metabolismo , Obesidade/terapia , Retinal Desidrogenase/metabolismo , Adipogenia/fisiologia , Família Aldeído Desidrogenase 1 , Animais , Diferenciação Celular/fisiologia , Cães , Camundongos , Termogênese/fisiologia , Transplante Heterólogo/métodos , Vitamina A/metabolismo
10.
ACS Appl Mater Interfaces ; 9(19): 16553-16560, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28452460

RESUMO

Extensive efforts have been devoted to the development of surfactant-free electronic ink (E-ink) with excellent display resolution for high-definition resolution display. Herein, we report the use of polydopamine-based synthetic melanin, a class of functional nanoparticles with similar chemical compositions and physical properties to those of naturally occurring melanin, as a new E-ink material. It was found that such E-ink displays could achieve ultrahigh resolution (>10 000 ppi) and low power consumption (operation voltage of only 1 V) in aqueous solutions. Interestingly, simple oxidation of synthetic melanin nanoparticles enables the generation of intrinsic fluorescence, allowing further development of fluorescent E-ink displays with nanoscale resolution. We describe these bioinspired materials in an initial proof-of-concept study and propose that synthetic melanin nanoparticles will be suitable for electronic nanoinks with a potential wide range of applications in molecular patterning and fluorescence bioimaging.


Assuntos
Melaninas/química , Corantes , Tinta , Nanopartículas , Água
11.
Lab Chip ; 16(21): 4047-4062, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27713986

RESUMO

Electroporation has been one of the most popular non-viral technologies for cell transfection. However, conventional bulk electroporation (BEP) shows significant limitations in efficiency, cell viability and transfection uniformity. Recent advances in microscale-electroporation (MEP) resulted in improved cell viability. Further miniaturization of the electroporation system (i.e., nanoscale) has brought up many unique advantages, including negligible cell damage and dosage control capabilities with single-cell resolution, which has enabled more translational applications. In this review, we give an insight into the fundamental and technical aspects of micro- and nanoscale/nanochannel electroporation (NEP) and go over several examples of MEP/NEP-based cutting-edge research, including gene editing, adoptive immunotherapy, and cellular reprogramming. The challenges and opportunities of advanced electroporation technologies are also discussed.


Assuntos
Eletroporação/métodos , Microtecnologia/métodos , Nanotecnologia/métodos , Humanos
12.
Small ; 12(43): 5971-5980, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27648733

RESUMO

While electroporation has been widely used as a physical method for gene transfection in vitro and in vivo, its application in gene therapy of cardiovascular cells remains challenging. Due to the high concentration of ion-transport proteins in the sarcolemma, conventional electroporation of primary cardiomyocytes tends to cause ion-channel activation and abnormal ion flux, resulting in low transfection efficiency and high mortality. In this work, a high-throughput nanoelectroporation technique based on a nanochannel array platform is reported, which enables massively parallel delivery of genetic cargo (microRNA, plasmids) into mouse primary cardiomyocytes in a controllable, highly efficient, and benign manner. A simple "dipping-trap" approach was implemented to precisely position a large number of cells on the nanoelectroporation platform. With dosage control, our device precisely titrates the level of miR-29, a potential therapeutic agent for cardiac fibrosis, and determines the minimum concentration of miR-29 causing side effects in mouse primary cardiomyocytes. Moreover, the dose-dependent effect of miR-29 on mitochondrial potential and homeostasis is monitored. Altogether, our nanochannel array platform provides efficient trapping and transfection of primary mouse cardiomyocyte, which can improve the quality control for future microRNA therapy in heart diseases.


Assuntos
Miócitos Cardíacos/metabolismo , Nanopartículas/química , Nanotecnologia/métodos , Transfecção/métodos , Animais , Células Cultivadas , Simulação por Computador , Eletroporação , Camundongos , MicroRNAs/metabolismo
13.
Oncotarget ; 7(37): 59273-59286, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27517749

RESUMO

Deregulation of microRNAs' expression frequently occurs in acute myeloid leukemia (AML). Lower miR-181a expression is associated with worse outcomes, but the exact mechanisms by which miR-181a mediates this effect remain elusive. Aberrant activation of the RAS pathway contributes to myeloid leukemogenesis. Here, we report that miR-181a directly binds to 3'-untranslated regions (UTRs); downregulates KRAS, NRAS and MAPK1; and decreases AML growth. The delivery of miR-181a mimics to target AML cells using transferrin-targeting lipopolyplex nanoparticles (NP) increased mature miR-181a; downregulated KRAS, NRAS and MAPK1; and resulted in decreased phosphorylation of the downstream RAS effectors. NP-mediated upregulation of miR-181a led to reduced proliferation, impaired colony formation and increased sensitivity to chemotherapy. Ectopic expression of KRAS, NRAS and MAPK1 attenuated the anti-leukemic activity of miR-181a mimics, thereby validating the relevance of the deregulated miR-181a-RAS network in AML. Finally, treatment with miR-181a-NP in a murine AML model resulted in longer survival compared to mice treated with scramble-NP control. These data support that targeting the RAS-MAPK-pathway by miR-181a mimics represents a novel promising therapeutic approach for AML and possibly for other RAS-driven cancers.


Assuntos
GTP Fosfo-Hidrolases/genética , Leucemia Mieloide Aguda/terapia , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Nanopartículas , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
14.
Mol Ther ; 24(5): 956-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26782640

RESUMO

Nanochannel electroporation (NEP) was applied to deliver precise dosages of myeloid cell leukemia-1 (Mcl-1)-specific siRNA and molecular beacons to two types of acute myeloid leukemia (AML) cells, FMS-like tyrosine kinase-3 wild-type (WT) and internal tandem duplications (ITD) type at the single-cell level. NEP, together with single-cell quantitative reverse transcription PCR, led to an observation showing nearly 20-folds more Mcl-1 siRNA than MCL1 mRNA were required to induce cell death for both cell lines and patient blasts, i.e., ~8,800 siRNAs for ~500 ± 50 mRNAs in ITD cells and ~6,000 siRNAs for ~300 ± 50 mRNAs in WT cells. A time-lapse study revealed that >75% MCL1 mRNA was downregulated within 1 hour after delivery of a small amount of siRNA. However, additional siRNA was required to inhibit the newly transcribed mRNA for >12 hours until the cell lost its ability of self-protection recovery. A multidelivery strategy of low doses and short delivery interval, which require 77% less siRNA and has the potential of lower side effects and clinical cost, was as effective as a single high-dose siRNA delivery. Our method provides a viable analytical tool to investigate gene silencing at the single-cell level for oligonucleotide-based therapy.


Assuntos
Leucemia Mieloide Aguda/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Análise de Célula Única/métodos , Tirosina Quinase 3 Semelhante a fms/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletroporação , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequências de Repetição em Tandem , Transfecção
15.
Nanoscale ; 8(6): 3181-206, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26745513

RESUMO

The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.


Assuntos
Rastreamento de Células/métodos , Imagem Molecular/métodos , Nanotecnologia/métodos , Animais , Humanos
16.
Adv Sci (Weinh) ; 2(12): 1500111, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27980918

RESUMO

A living cell interrogation platform based on nanochannel electroporation is demonstrated with analysis of RNAs in single cells. This minimally invasive process is based on individual cells and allows both multi-target analysis and stimulus-response analysis by sequential deliveries. The unique platform possesses a great potential to the comprehensive and lysis-free nucleic acid analysis on rare or hard-to-transfect cells.

17.
Int J Nanomedicine ; 9: 679-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24493925

RESUMO

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1-Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ(+) lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.


Assuntos
Proteção Cruzada/imunologia , Ácido Láctico/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Ácido Poliglicólico/química , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Suínos , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/química
18.
Clin Cancer Res ; 19(9): 2355-67, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23493348

RESUMO

PURPOSE: miR-29b directly or indirectly targets genes involved in acute myeloid leukemia (AML), namely, DNMTs, CDK6, SP1, KIT, and FLT3. Higher miR-29b pretreatment expression is associated with improved response to decitabine and better outcome in AML. Thus, designing a strategy to increase miR-29b levels in AML blasts may be of therapeutic value. However, free synthetic miRs are easily degraded in bio-fluids and have limited cellular uptake. To overcome these limitations, we developed a novel transferrin-conjugated nanoparticle delivery system for synthetic miR-29b (Tf-NP-miR-29b). EXPERIMENTAL DESIGN: Delivery efficiency was investigated by flow cytometry, confocal microscopy, and quantitative PCR. The expression of miR-29b targets was measured by immunoblotting. The antileukemic activity of Tf-NP-miR-29b was evaluated by measuring cell proliferation and colony formation ability and in a leukemia mouse model. RESULTS: Tf-NP-miR-29b treatment resulted in more than 200-fold increase of mature miR-29b compared with free miR-29b and was approximately twice as efficient as treatment with non-transferrin-conjugated NP-miR-29b. Tf-NP-miR-29b treatment significantly downregulated DNMTs, CDK6, SP1, KIT, and FLT3 and decreased AML cell growth by 30% to 50% and impaired colony formation by approximately 50%. Mice engrafted with AML cells and then treated with Tf-NP-miR-29b had significantly longer survival compared with Tf-NP-scramble (P = 0.015) or free miR-29b (P = 0.003). Furthermore, priming AML cell with Tf-NP-miR-29b before treatment with decitabine resulted in marked decrease in cell viability in vitro and showed improved antileukemic activity compared with decitabine alone (P = 0.001) in vivo. CONCLUSIONS: Tf-NP effectively delivered functional miR-29b, resulting in target downregulation and antileukemic activity and warrants further investigation as a novel therapeutic approach in AML.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Leucemia Mieloide Aguda/terapia , MicroRNAs/genética , Nanopartículas/química , Transferrina/química , Animais , Azacitidina/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Decitabina , Regulação para Baixo , Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Humanos , Ácido Linoleico/química , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Anal Chem ; 85(3): 1401-7, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23237665

RESUMO

Multiple gene transfections are often required to control the differentiation of embryonic stem cells. This is typically done by removing the cells from the culture substrate and conducting gene transfection via bulk electroporation (in suspension), which is then followed by further culture. Such repetitive processes could affect the growth and behavior of delicate/scarce adherent cells. We have developed a novel nanofiber-based sandwich electroporation device capable of in situ and in culture gene transfection. Electrospinning was used to deposit poly(ε-caprolactone)/gelatin nanofibers on the Al(2)O(3) nanoporous support membrane, on top of which a polystyrene microspacer was thermally bonded to control embryonic stem cell colony formation. The applicability of this system was demonstrated by culturing and transfecting mouse embryonic stem cells. Measurements of secreted alkaline phosphatase protein and metabolic activity showed higher transfection efficacy and cell viability compared to the conventional bulk electroporation approach.


Assuntos
Eletroporação/métodos , Células-Tronco Embrionárias/fisiologia , Técnicas de Transferência de Genes , Nanofibras/química , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos , Nanofibras/administração & dosagem
20.
Clin Cancer Res ; 19(2): 347-56, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23209030

RESUMO

PURPOSE: Corticosteroids are widely used for the treatment of B-cell malignancies, including non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia; however, this class of drug is associated with undesirable off-target effects. Herein, we developed novel milatuzumab-conjugated liposomes as a targeted dexamethasone carrier for therapeutic delivery in CD74(+) B-cell malignancies and explored its effect against the disease. EXPERIMENTAL DESIGN: The targeting efficiency of milatuzumab-targeted liposomes to CD74(+) cells was evaluated in vitro. The effect of CD74-targeted liposomal dexamethasone was compared with free dexamethasone in primary CLL cells and cell lines in vitro. The therapeutic efficacy of CD74-targeted liposomal dexamethasone was evaluated in a Raji-severe combined immunodeficient (SCID) xenograft model in vivo. RESULTS: Milatuzumab-targeted liposomes promoted selective incorporation of carrier molecules into transformed CD74-positive B cells as compared with CD74-negative T-cells. The CD74-dexamethasone-targeted liposomes (CD74-IL-DEX) promoted and increased killing in CD74-positive tumor cells and primary CLL cells. Furthermore, the targeted drug liposomes showed enhanced therapeutic efficacy against a CD74-positive B-cell model as compared with free, or non-targeted, liposomal dexamethasone in SCID mice engrafted with Raji cells in vivo. CONCLUSIONS: These studies provide evidence and support for a potential use of CD74-targeted liposomal dexamethasone as a new therapy for B-cell malignancies.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Dexametasona/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Linhagem Celular Tumoral , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/mortalidade , Lipossomos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/mortalidade , Camundongos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...