Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 420, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691125

RESUMO

BACKGROUND: The cultivated strawberry (Fragaria × ananassa Duch.) is one of the most economically important horticultural crops worldwide. Botrytis fruit rot (BFR) caused by the necrotrophic fungal pathogen Botrytis cinerea is the most devasting disease of cultivated strawberries. Most commercially grown strawberry varieties are susceptible to BFR, and controlling BFR relies on repeated applications of various fungicides. Despite extensive efforts, breeding for BFR resistance has been unsuccessful, primarily due to lack of information regarding the mechanisms of disease resistance and genetic resources available in strawberry. RESULTS: Using a reverse genetics approach, we identified candidate genes associated with BFR resistance and screened Arabidopsis mutants using strawberry isolates of B. cinerea. Among the five Arabidopsis T-DNA knockout lines tested, the mutant line with AtWRKY53 showed the greatest reduction in disease symptoms of BFR against the pathogen. Two genes, FaWRKY29 and FaWRKY64, were identified as orthologs in the latest octoploid strawberry genome, 'Florida Brilliance'. We performed RNAi-mediated transient assay and found that the disease frequencies were significantly decreased in both FaWRKY29- and FaWRKY64-RNAi fruits of the strawberry cultivar, 'Florida Brilliance'. Furthermore, our transcriptomic data analysis revealed significant regulation of genes associated with ABA and JA signaling, plant cell wall composition, and ROS in FaWRKY29 or FaWRKY64 knockdown strawberry fruits in response to the pathogen. CONCLUSION: Our study uncovered the foundational role of WRKY transcription factor genes, FaWRKY29 and FaWRKY64, in conferring resistance against B. cinerea. The discovery of susceptibility genes involved in BFR presents significant potential for developing resistance breeding strategies in cultivated strawberries, potentially leveraging CRISPR-based gene editing techniques.


Assuntos
Arabidopsis , Fragaria , Fragaria/genética , Botrytis , Frutas/genética , Melhoramento Vegetal
2.
Plant Direct ; 6(8): e422, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949955

RESUMO

Reduced plant height due to shortened stems is beneficial for improving crop yield potential, better resilience to biotic/abiotic stresses, and rapid crop producer adoption of the agronomic and management practices. Breeding tomato plants with a reduced height, however, poses a particular challenge because this trait is often associated with a significant fruit size (weight) reduction. The tomato BRACHYTIC (BR) locus controls plant height. Genetic mapping and genome assembly revealed three flowering promoting factor 1 (FPF1) genes located within the BR mapping interval, and a complete coding sequence deletion of the telomere proximal FPF1 (Solyc01g066980) was found in the br allele but not in BR. The knock-out of Solyc01g066980 in BR large-fruited fresh-market tomato reduced the height and fruit yield, but the ability to produce large size fruits was retained. However, concurrent yield evaluation of a pair of sister lines with or without the br allele revealed that artificial selection contributes to commercially acceptable yield potential in br tomatoes. A network analysis of gene-expression patterns across genotypes, tissues, and the gibberellic acid (GA) treatment revealed that member(s) of the FPF1 family may play a role in the suppression of the GA biosynthesis in roots and provided a framework for identifying the responsible molecular signaling pathways in br-mediated phenotypic changes. Lastly, mutations of br homologs also resulted in reduced height. These results shed light on the genetic and physiological mechanisms by which the br allele alters tomato architecture.

3.
Plant Cell Rep ; 38(9): 1109-1125, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31134348

RESUMO

KEY MESSAGE: BdASR4 expression was up-regulated during abiotic stress and hormone treatments. Plants over-expressing BdASR4 improved drought tolerant. BdASR4 may regulate antioxidant activities and transcript levels of stress-related and abscisic acid-responsive genes. Abiotic stress conditions negatively affect plant growth and developmental processes, causing a reduction in crop productivity. The abscisic acid-, stress-, ripening-induced (ASR) proteins play important roles in the protection of plants from abiotic stress. Brachypodium distachyon L. is a well-studied monocot model plant. However, ASR proteins of Brachypodium have not been widely studied. In this study, five ASR genes of Brachypodium plant were cloned and characterized. The BdASR genes were expressed in response to various abiotic stresses and hormones. In particular, BdASR4 was shown to encode a protein containing a nuclear localization signal in its C-terminal region, which enabled protein localization in the nucleus. To further examine functions of BdASR4, transgenic Brachypodium plants harboring BdASR4 were generated. Over-expression of BdASR4 was associated with strong drought tolerance, and plants over-expressing BdASR4 preserved more water and displayed higher antioxidant enzyme activities than did the wild-type plants. The transcript levels of stress-responsive genes, reactive oxygen species scavenger-associated genes, and abscisic acid-responsive genes tended to be higher in transgenic plants than in WT plants. Moreover, plants over-expressing BdASR4 were hypersensitive to exogenous abscisic acid at the germination stage. Taken together, these findings suggest multiple roles for BdASR4 in the plant response to drought stress by regulating antioxidant enzymes and the transcription of stress- and abscisic acid-responsive genes.


Assuntos
Antioxidantes/metabolismo , Brachypodium/genética , Proteínas de Plantas/metabolismo , Água/fisiologia , Brachypodium/fisiologia , Núcleo Celular/metabolismo , Secas , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
4.
Genome ; 60(7): 581-587, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28319670

RESUMO

Brachypodium distachyon has been proposed as a model plant for agriculturally important cereal crops such as wheat and barley. Seed coat colour change from brown-red to yellow was observed in a mutant line (142-3) of B. distachyon, which was induced by chronic gamma radiation. In addition, dwarf phenotypes were observed in each of the lines 142-3, 421-2, and 1376-1. To identify causal mutations for the seed coat colour change, the three mutant lines and the wild type were subjected to whole-genome re-sequencing. After removing natural variations, 906, 1057, and 978 DNA polymorphisms were detected in 142-3, 421-2, and 1376-1, respectively. A total of 13 high-risk DNA polymorphisms were identified in mutant 142-3. Based on a comparison with DNA polymorphisms in 421-2 and 1376-1, candidate causal mutations for the seed coat colour change in 142-3 were selected. In the two independent Arabidopsis thaliana lines carrying T-DNA insertions in the AtCHI, seed colour change was observed. We propose a frameshift mutation in BdCHI1 as a causal mutation responsible for seed colour change in 142-3. The DNA polymorphism information for these mutant lines can be utilized for functional genomics in B. distachyon and cereal crops.


Assuntos
Brachypodium/efeitos da radiação , Mutação , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Brachypodium/genética , Fenótipo , Proteínas de Plantas/efeitos da radiação , Polimorfismo Genético , Sementes/genética , Sementes/efeitos da radiação
5.
J Sci Food Agric ; 97(7): 2159-2165, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27604502

RESUMO

BACKGROUND: Brachypodium distachyon (L.) Beauv. is a monocotyledonous model plant that has been studied to understand a range of biological phenomena for lignocellulosic bioethanol feedstocks and other cereal crops. The lignin makes its cell walls recalcitrant to saccharification, constituting the main barrier to lignocellulosic bioethanol production. In this study, lignin-deficient mutants of B. distachyon induced by chronic radiation were selected and the effects of the mutants on fermentable glucose production were identified. RESULTS: Brachypodium distachyon M2 mutants induced by chronically irradiated gamma radiation were screened by the Wiesner test. Lignin-deficient M2 mutants were further confirmed in subsequent M3 and M4 generations by determining acetyl bromide-soluble lignin. The lignin content was significantly reduced in mutant plants 135-2 (by 7.99%), 142-3 (by 13.8%) and 406-1 (by 8.13%) compared with the wild type. Moreover, fermentable glucose was significantly higher in 135-2 (by 23.91%) and 142-3 (by 36.72%) than in the wild type after 72 h of enzymatic hydrolysis. CONCLUSION: Three lignin-deficient B. distachyon mutants induced by chronically irradiated gamma radiation were obtained. This study will provide fundamental understanding of the B. distachyon cell wall and could contribute to increases in bioethanol production using bioenergy crops. © 2016 Society of Chemical Industry.


Assuntos
Brachypodium/genética , Brachypodium/efeitos da radiação , Lignina/análise , Biocombustíveis , Brachypodium/química , Brachypodium/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/efeitos da radiação , Raios gama , Lignina/metabolismo , Mutação , Caules de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...