Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(12): 1538-1552.e6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38593801

RESUMO

In the mammalian auditory system, frequency discrimination depends on numerous morphological and physiological properties of the organ of Corti, which gradually change along the apex-to-base (tonotopic) axis of the organ. For example, the basilar membrane stiffness changes tonotopically, thus affecting the tuning properties of individual hair cells. At the molecular level, those frequency-specific characteristics are mirrored by gene expression gradients; however, the molecular mechanisms controlling tonotopic gene expression in the mouse cochlea remain elusive. Through analyzing single-cell RNA sequencing (scRNA-seq) data from E12.5 and E14.5 time points, we predicted that morphogens, rather than a cell division-associated mechanism, confer spatial identity in the extending cochlea. Subsequently, we reconstructed the developing cochlea in 3D space from scRNA-seq data to investigate the molecular pathways mediating positional information. The retinoic acid (RA) and hedgehog pathways were found to form opposing apex-to-base gradients, and functional interrogation using mouse cochlear explants suggested that both pathways jointly specify the longitudinal axis.


Assuntos
Cóclea , Animais , Camundongos , Cóclea/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Órgão Espiral/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Análise de Célula Única/métodos , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Transdução de Sinais , Imageamento Tridimensional/métodos , Células Ciliadas Auditivas/metabolismo , Análise da Expressão Gênica de Célula Única
2.
Mol Cell Neurosci ; 120: 103736, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577314

RESUMO

The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.


Assuntos
Orelha Interna , Perda Auditiva , Animais , Orelha Interna/fisiologia , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/terapia , Mamíferos , Camundongos , Células-Tronco
3.
Genome Res ; 31(10): 1885-1899, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33837132

RESUMO

Auditory hair cells transduce sound to the brain, and in mammals, these cells reside together with supporting cells in the sensory epithelium of the cochlea, called the organ of Corti. To establish the organ's delicate function during development and differentiation, spatiotemporal gene expression is strictly controlled by chromatin accessibility and cell type-specific transcription factors, jointly representing the regulatory landscape. Bulk sequencing technology and cellular heterogeneity obscured investigations on the interplay between transcription factors and chromatin accessibility in inner ear development. To study the formation of the regulatory landscape in hair cells, we collected single-cell chromatin accessibility profiles accompanied by single-cell RNA data from genetically labeled murine hair cells and supporting cells after birth. Using an integrative approach, we predicted cell type-specific activating and repressing functions of developmental transcription factors. Furthermore, by integrating gene expression and chromatin accessibility data sets, we reconstructed gene regulatory networks. Then, using a comparative approach, 20 hair cell-specific activators and repressors, including putative downstream target genes, were identified. Clustering of target genes resolved groups of related transcription factors and was used to infer their developmental functions. Finally, the heterogeneity in the single-cell data allowed us to spatially reconstruct transcriptional as well as chromatin accessibility trajectories, indicating that gradual changes in the chromatin accessibility landscape are lagging behind the transcriptional identity of hair cells along the organ's longitudinal axis. Overall, this study provides a strategy to spatially reconstruct the formation of a lineage-specific regulatory landscape using a single-cell multi-omics approach.


Assuntos
Cóclea , Células Ciliadas Auditivas , Animais , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Células Ciliadas Auditivas/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463901

RESUMO

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Assuntos
Regulação da Expressão Gênica/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , gama-Globinas/genética , Sítios de Ligação , Linhagem Celular , Ativação Enzimática/genética , Epigênese Genética/genética , Células Eritroides/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Células K562 , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Domínios Proteicos , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
5.
Blood ; 130(23): 2537-2547, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29018082

RESUMO

The orphan nuclear receptors TR4 (NR2C2) and TR2 (NR2C1) are the DNA-binding subunits of the macromolecular complex, direct repeat erythroid-definitive, which has been shown to repress ε- and γ-globin transcription during adult definitive erythropoiesis. Previous studies implied that TR2 and TR4 act largely in a redundant manner during erythroid differentiation; however, during the course of routine genetic studies, we observed multiple variably penetrant phenotypes in the Tr4 mutants, suggesting that indirect effects of the mutation might be masked by multiple modifying genes. To test this hypothesis, Tr4+/- mutant mice were bred into a congenic C57BL/6 background and their phenotypes were reexamined. Surprisingly, we found that homozygous Tr4 null mutant mice expired early during embryogenesis, around embryonic day 7.0, and well before erythropoiesis commences. We further found that Tr4+/- erythroid cells failed to fully differentiate and exhibited diminished proliferative capacity. Analysis of Tr4+/- mutant erythroid cells revealed that reduced TR4 abundance resulted in decreased expression of genes required for heme biosynthesis and erythroid differentiation (Alad and Alas2), but led to significantly increased expression of the proliferation inhibitory factor, cyclin dependent kinase inhibitor (Cdkn1c) These studies support a vital role for TR4 in promoting erythroid maturation and proliferation, and demonstrate that TR4 and TR2 execute distinct, individual functions during embryogenesis and erythroid differentiation.


Assuntos
Diferenciação Celular/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Anemia/sangue , Anemia/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células/genética , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Heterozigoto , Homozigoto , Linfopoese/genética , Camundongos , Camundongos Knockout , Mutação , Mielopoese/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo
6.
BMC Genomics ; 15: 821, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25262113

RESUMO

BACKGROUND: The basic helix-loop-helix transcription factor Twist1 has well-documented roles in progenitor populations of the developing embryo, including endocardial cushions (ECC) and limb buds, and also in cancer. Whether Twist1 regulates the same transcriptional targets in different tissue types is largely unknown. RESULTS: The tissue-specificity of Twist1 genomic occupancy was examined in mouse ECCs, limb buds, and peripheral nerve sheath tumor (PNST) cells using chromatin immunoprecipitation followed by sequencing (Chip-seq) analysis. Consistent with known Twist1 functions during development and in cancer cells, Twist1-DNA binding regions associated with genes related to cell migration and adhesion were detected in all three tissues. However, the vast majority of Twist1 binding regions were specific to individual tissue types. Thus, while Twist1 has similar functions in ECCs, limb buds, and PNST cells, the specific genomic sequences occupied by Twist1 were different depending on cellular context. Subgroups of shared genes, also predominantly related to cell adhesion and migration, were identified in pairwise comparisons of ECC, limb buds and PNST cells. Twist1 genomic occupancy was detected for six binding regions in all tissue types, and Twist1-binding sequences associated with Chst11, Litaf, Ror2, and Spata5 also bound the potential Twist1 cofactor RREB1. Pathway analysis of the genes associated with Twist1 binding suggests that Twist1 may regulate genes associated with the Wnt signaling pathway in ECCs and limb buds. CONCLUSIONS: Together, these data indicate that Twist1 interacts with genes that regulate adhesion and migration in different tissues, potentially through distinct sets of target genes. In addition, there is a small subset of genes occupied by Twist1 in all three tissues that may represent a core group of Twist1 target genes in multiple cell types.


Assuntos
Coxins Endocárdicos/metabolismo , Genoma , Botões de Extremidades/metabolismo , Neoplasias de Bainha Neural/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Animais , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Desenvolvimento Embrionário/genética , Coxins Endocárdicos/citologia , Expressão Gênica , Botões de Extremidades/citologia , Camundongos , Neoplasias de Bainha Neural/patologia , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Análise de Sequência de DNA , Proteína 1 Relacionada a Twist/metabolismo
7.
PLoS One ; 6(12): e29758, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22242143

RESUMO

Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM) molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/citologia , Valvas Cardíacas/embriologia , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Sequência de Bases , Caderinas/genética , Proliferação de Células , Galinhas , Sequência Conservada/genética , Evolução Molecular , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Células HEK293 , Valvas Cardíacas/metabolismo , Humanos , Íntrons/genética , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...