Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 63, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935709

RESUMO

The liver has a remarkable regenerative capacity. Nevertheless, under chronic liver-damaging conditions, this capacity becomes exhausted, allowing the accumulation of fibrotic tissue and leading to end-stage liver disease. Enhancing the endogenous regenerative capacity by targeting regeneration breaks is an innovative therapeutic approach. We set up an in vivo functional genetic screen to identify such regeneration breaks. As the top hit, we identified Microfibril associated protein 4 (Mfap4). Knockdown of Mfap4 in hepatocytes enhances cell proliferation, accelerates liver regeneration, and attenuates chronic liver disease by reducing liver fibrosis. Targeting Mfap4 modulates several liver regeneration-related pathways including mTOR. Our research opens the way to siRNA-based therapeutics to enhance hepatocyte-based liver regeneration.

2.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586766

RESUMO

BACKGROUND: Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS: By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS: We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS: This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Microesferas , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Deleção Cromossômica
3.
Nat Commun ; 14(1): 1726, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977662

RESUMO

Mis-sense mutations affecting TP53 promote carcinogenesis both by inactivating tumor suppression, and by conferring pro-carcinogenic activities. We report here that p53 DNA-binding domain (DBD) and transactivation domain (TAD) mis-sense mutants unexpectedly activate pro-carcinogenic epidermal growth factor receptor (EGFR) signaling via distinct, previously unrecognized molecular mechanisms. DBD- and TAD-specific TP53 mutants exhibited different cellular localization and induced distinct gene expression profiles. In multiple tissues, EGFR is stabilized by TAD and DBD mutants in the cytosolic and nuclear compartments respectively. TAD mutants promote EGFR-mediated signaling by enhancing EGFR interaction with AKT via DDX31 in the cytosol. Conversely, DBD mutants maintain EGFR activity in the nucleus, by blocking EGFR interaction with the phosphatase SHP1, triggering c-Myc and Cyclin D1 upregulation. Our findings suggest that p53 mutants carrying gain-of-function, mis-sense mutations affecting two different domains form new protein complexes that promote carcinogenesis by enhancing EGFR signaling via distinctive mechanisms, exposing clinically relevant therapeutic vulnerabilities.


Assuntos
Receptores ErbB , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transdução de Sinais , Ativação Transcricional , Fosforilação
4.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056172

RESUMO

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Assuntos
Montagem e Desmontagem da Cromatina , Fluoxetina , Humanos , Antidepressivos/farmacologia , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacologia , Fluoxetina/metabolismo , Mamíferos , Multiômica , Animais
5.
Front Cell Dev Biol ; 10: 938625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846378

RESUMO

Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.

7.
Stem Cells ; 40(1): 112-122, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511868

RESUMO

Mammary gland homeostasis is maintained by adult tissue stem-progenitor cells residing within the luminal and basal epithelia. Dysregulation of mammary stem cells is a key mechanism for cancer development. However, stem cell characterization is challenging because reporter models using cell-specific promoters do not fully recapitulate the mammary stem cell populations. We previously found that a 270-basepair Runx1 enhancer element, named eR1, marked stem cells in the blood and stomach. Here, we identified eR1 activity in a rare subpopulation of the ERα-negative luminal epithelium in mouse mammary glands. Lineage-tracing using an eR1-CreERT2 mouse model revealed that eR1+ luminal cells generated the entire luminal lineage and milk-secreting alveoli-eR1 therefore specifically marks lineage-restricted luminal stem cells. eR1-targeted-conditional knockout of Runx1 led to the expansion of luminal epithelial cells, accompanied by elevated ERα expression. Our findings demonstrate a definitive role for Runx1 in the regulation of the eR1-positive luminal stem cell proliferation during mammary homeostasis. Our findings identify a mechanistic link for Runx1 in stem cell proliferation and its dysregulation in breast cancer. Runx1 inactivation is therefore likely to be an early hit in the cell-of-origin of ERα+ luminal type breast cancer.


Assuntos
Receptor alfa de Estrogênio , Glândulas Mamárias Animais , Animais , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Elementos Facilitadores Genéticos/genética , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos , Células-Tronco/metabolismo
8.
Oncogene ; 41(13): 1986-2002, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236967

RESUMO

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Neoplasias , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Trifosfato de Adenosina/metabolismo , Apoptose , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Consumo de Oxigênio , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Quinase 1 Polo-Like
9.
Proc Natl Acad Sci U S A ; 119(10): e2113233119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235448

RESUMO

SignificanceOur work focuses on the critical longstanding question of the nontranscriptional role of p53 in tumor suppression. We demonstrate here that poly(ADP-ribose) polymerase (PARP)-dependent modification of p53 enables rapid recruitment of p53 to damage sites, where it in turn directs early repair pathway selection. Specifically, p53-mediated recruitment of 53BP1 at early time points promotes nonhomologous end joining over the more error-prone microhomology end-joining. Similarly, p53 directs nucleotide excision repair by mediating DDB1 recruitment. This property of p53 also correlates with tumor suppression in vivo. Our study provides mechanistic insight into how certain transcriptionally deficient p53 mutants may retain tumor-suppressive functions through regulating the DNA damage response.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
10.
Sci Adv ; 7(41): eabh2443, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613780

RESUMO

Cell state transitions control the functional behavior of cancer cells. Epithelial-to-mesenchymal transition (EMT) confers cancer stem cell-like properties, enhanced tumorigenicity and drug resistance to tumor cells, while mesenchymal-epithelial transition (MET) reverses these phenotypes. Using high-throughput chemical library screens, retinoids are found to be potent promoters of MET that inhibit tumorigenicity in basal-like breast cancer. Cell state transitions are defined by reprogramming of lipid metabolism. Retinoids bind cognate nuclear receptors, which target lipid metabolism genes, thereby redirecting fatty acids for ß-oxidation in the mesenchymal cell state towards lipid storage in the epithelial cell state. Disruptions of key metabolic enzymes mediating this flux inhibit MET. Conversely, perturbations to fatty acid oxidation (FAO) rechannel fatty acid flux and promote a more epithelial cell phenotype, blocking EMT-driven breast cancer metastasis in animal models. FAO impinges on the epigenetic control of EMT through acetyl-CoA-dependent regulation of histone acetylation on EMT genes, thus determining cell states.

11.
Circ Res ; 127(6): 761-777, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32529949

RESUMO

RATIONALE: Identifying genetic markers for heterogeneous complex diseases such as heart failure is challenging and requires prohibitively large cohort sizes in genome-wide association studies to meet the stringent threshold of genome-wide statistical significance. On the other hand, chromatin quantitative trait loci, elucidated by direct epigenetic profiling of specific human tissues, may contribute toward prioritizing subthreshold variants for disease association. OBJECTIVE: Here, we captured noncoding genetic variants by performing epigenetic profiling for enhancer H3K27ac chromatin immunoprecipitation followed by sequencing in 70 human control and end-stage failing hearts. METHODS AND RESULTS: We have mapped a comprehensive catalog of 47 321 putative human heart enhancers and promoters. Three thousand eight hundred ninety-seven differential acetylation peaks (FDR [false discovery rate], 5%) pointed to pathways altered in heart failure. To identify cardiac histone acetylation quantitative trait loci (haQTLs), we regressed out confounding factors including heart failure disease status and used the G-SCI (Genotype-independent Signal Correlation and Imbalance) test1 to call out 1680 haQTLs (FDR, 10%). RNA sequencing performed on the same heart samples proved a subset of haQTLs to have significant association also to gene expression (expression quantitative trait loci), either in cis (180) or through long-range interactions (81), identified by Hi-C (high-throughput chromatin conformation assay) and HiChIP (high-throughput protein centric chromatin) performed on a subset of hearts. Furthermore, a concordant relationship between the gain or disruption of TF (transcription factor)-binding motifs, inferred from alternative alleles at the haQTLs, implied a surprising direct association between these specific TF and local histone acetylation in human hearts. Finally, 62 unique loci were identified by colocalization of haQTLs with the subthreshold loci of heart-related genome-wide association studies datasets. CONCLUSIONS: Disease and phenotype association for 62 unique loci are now implicated. These loci may indeed mediate their effect through modification of enhancer H3K27 acetylation enrichment and their corresponding gene expression differences (bioRxiv: https://doi.org/10.1101/536763). Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Epigenoma , Variação Genética , Insuficiência Cardíaca/genética , Histonas/genética , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Epigênese Genética , Epigenômica , Feminino , Predisposição Genética para Doença , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas
12.
Gastroenterology ; 157(6): 1615-1629.e17, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446059

RESUMO

BACKGROUND & AIMS: Some oncogenes encode transcription factors, but few drugs have been successfully developed to block their activity specifically in cancer cells. The transcription factor SALL4 is aberrantly expressed in solid tumor and leukemia cells. We developed a screen to identify compounds that reduce the viability of liver cancer cells that express high levels of SALL4, and we investigated their mechanisms. METHODS: We developed a stringent high-throughput screening platform comprising unmodified SNU-387 and SNU-398 liver cancer cell lines and SNU-387 cell lines engineered to express low and high levels of SALL4. We screened 1597 pharmacologically active small molecules and 21,575 natural product extracts from plant, bacteria, and fungal sources for those that selectively reduce the viability of cells with high levels of SALL4 (SALL4hi cells). We compared gene expression patterns of SALL4hi cells vs SALL4-knockdown cells using RNA sequencing and real-time polymerase chain reaction analyses. Xenograft tumors were grown in NOD/SCID gamma mice from SALL4hi SNU-398 or HCC26.1 cells or from SALL4lo patient-derived xenograft (PDX) cells; mice were given injections of identified compounds or sorafenib, and the effects on tumor growth were measured. RESULTS: Our screening identified 1 small molecule (PI-103) and 4 natural compound analogues (oligomycin, efrapeptin, antimycin, and leucinostatin) that selectively reduced viability of SALL4hi cells. We performed validation studies, and 4 of these compounds were found to inhibit oxidative phosphorylation. The adenosine triphosphate (ATP) synthase inhibitor oligomycin reduced the viability of SALL4hi hepatocellular carcinoma and non-small-cell lung cancer cell lines with minimal effects on SALL4lo cells. Oligomycin also reduced the growth of xenograft tumors grown from SALL4hi SNU-398 or HCC26.1 cells to a greater extent than sorafenib, but oligomycin had little effect on tumors grown from SALL4lo PDX cells. Oligomycin was not toxic to mice. Analyses of chromatin immunoprecipitation sequencing data showed that SALL4 binds approximately 50% of mitochondrial genes, including many oxidative phosphorylation genes, to activate their transcription. In comparing SALL4hi and SALL4-knockdown cells, we found SALL4 to increase oxidative phosphorylation, oxygen consumption rate, mitochondrial membrane potential, and use of oxidative phosphorylation-related metabolites to generate ATP. CONCLUSIONS: In a screening for compounds that reduce the viability of cells that express high levels of the transcription factor SALL4, we identified inhibitors of oxidative phosphorylation, which slowed the growth of xenograft tumors from SALL4hi cells in mice. SALL4 activates the transcription of genes that regulate oxidative phosphorylation to increase oxygen consumption, mitochondrial membrane potential, and ATP generation in cancer cells. Inhibitors of oxidative phosphorylation might be used for the treatment of liver tumors with high levels of SALL4.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Hepáticas/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Fosforilação Oxidativa/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Methods Mol Biol ; 2005: 43-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31175645

RESUMO

Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity, that fuel tumor growth and contribute to the heterogeneous nature of tumors. First identified in hematological malignancies, CSC populations have to date been proposed in solid tumors in various organs. In vitro and in vivo assays, mouse genetic models, and more recently single-cell sequencing technologies and other '-omics' methodologies have not only facilitated the identification of novel CSC populations but also revealed and clarified novel properties of CSCs. Increasingly, both cell-autonomous and CSC niche factors are recognized as important contributors of CSC properties. The deepened understanding of CSC properties and characteristics would enable and facilitate the rational design of CSC-specific therapeutics that would, ideally, have high selectivity for cancer cells, eliminate tumor bulk, and prevent tumor recurrence. Addressing these issues would form some of the key challenges of the CSC research field in the coming years.


Assuntos
Neoplasias Experimentais , Células-Tronco Neoplásicas , Nicho de Células-Tronco/genética , Microambiente Tumoral/genética , Animais , Humanos , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
14.
Nature ; 525(7567): 119-23, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26266985

RESUMO

Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes. PIK3CA and P53 (also known as TP53) are the two most frequently mutated genes and are associated with different types of human breast cancers. The cellular origin and the mechanisms leading to PIK3CA-induced tumour heterogeneity remain unknown. Here we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and the impact of mutations in this gene on tumour heterogeneity. Surprisingly, oncogenic Pik3ca(H1047R) mutant expression at physiological levels in basal cells using keratin (K)5-CreER(T2) mice induced the formation of luminal oestrogen receptor (ER)-positive/progesterone receptor (PR)-positive tumours, while its expression in luminal cells using K8-CReER(T2) mice gave rise to luminal ER(+)PR(+) tumours or basal-like ER(-)PR(-) tumours. Concomitant deletion of p53 and expression of Pik3ca(H1047R) accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca(H1047R) in unipotent basal cells gave rise to luminal-like cells, while its expression in unipotent luminal cells gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that underwent cell fate transition upon Pik3ca(H1047R) expression in unipotent progenitors demonstrated a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures characteristic of the different cell fate switches that occur upon Pik3ca(H1047R) expression in basal and luminal cells, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca(H1047R) activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Fosfatidilinositol 3-Quinases/genética , Animais , Neoplasias da Mama/metabolismo , Diferenciação Celular/genética , Divisão Celular , Linhagem da Célula , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Genes p53/genética , Humanos , Neoplasias Mamárias Animais/metabolismo , Camundongos , Mutação/genética , Invasividade Neoplásica/genética , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
15.
J Mammary Gland Biol Neoplasia ; 18(2): 133-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677624

RESUMO

The first mouse mutation associated with a heritable defect in embryonic mammary gland development was Extratoes. It represents a functional null-mutation of the gene encoding Gli3, which is best known as a transcription factor mediating canonical Hedgehog (Hh) signaling. Here we review the roles of Hh and Gli proteins in murine embryonic mammary development. We propose that an off-state for Hh signaling, mediated by Gli3-repressor, is determinant for induction of a mammary instead of hair follicle fate in the trunk surface ectoderm.


Assuntos
Proteínas Hedgehog/metabolismo , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Humanas/embriologia , Proteínas Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Proteínas Oncogênicas/genética , Transdução de Sinais , Transativadores/genética , Proteína GLI1 em Dedos de Zinco
16.
PLoS One ; 6(10): e26242, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046263

RESUMO

Mammary gland development starts in utero with one or several pairs of mammary rudiments (MRs) budding from the surface ectodermal component of the mammalian embryonic skin. Mice develop five pairs, numbered MR1 to MR5 from pectoral to inguinal position. We have previously shown that Gli3(Xt-J/Xt-J) mutant embryos, which lack the transcription factor Gli3, do not form MR3 and MR5. We show here that two days after the MRs emerge, Gli3(Xt-J/Xt-J) MR1 is 20% smaller, and Gli3(Xt-J/Xt-J) MR2 and MR4 are 50% smaller than their wild type (wt) counterparts. Moreover, while wt MRs sink into the underlying dermis, Gli3(Xt-J/Xt-J) MR4 and MR2 protrude outwardly, to different extents. To understand why each of these five pairs of functionally identical organs has its own, distinct response to the absence of Gli3, we determined which cellular mechanisms regulate growth of the individual MRs, and whether and how Gli3 regulates these mechanisms. We found a 5.5 to 10.7-fold lower cell proliferation rate in wt MRs compared to their adjacent surface ectoderm, indicating that MRs do not emerge or grow via locally enhanced cell proliferation. Cell-tracing experiments showed that surface ectodermal cells are recruited toward the positions where MRs emerge, and contribute to MR growth during at least two days. During the second day of MR development, peripheral cells within the MRs undergo hypertrophy, which also contributes to MR growth. Limited apoptotic cell death counterbalances MR growth. The relative contribution of each of these processes varies among the five MRs. Furthermore, each of these processes is impaired in the absence of Gli3, but to different extents in each MR. This differential involvement of Gli3 explains the variation in phenotype among Gli3(Xt-J/Xt-J) MRs, and may help to understand the variation in numbers and positions of mammary glands among mammals.


Assuntos
Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipertrofia , Fatores de Transcrição Kruppel-Like/fisiologia , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Camundongos , Proteína Gli3 com Dedos de Zinco
17.
Int J Dev Biol ; 55(10-12): 969-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22252494

RESUMO

With the increased use of gene expression profiling to identify molecular regulators of cellular and developmental mechanisms, developmental biologists face a new challenge in dissecting tissues without cross-contamination or change in RNA profile, and with intact RNA integrity. We have developed a technique that overcomes these problems. We took the dissection of rudimentary mouse embryonic mammary glands as an example, as these structures are particularly difficult to separate from their contiguous ectoderm and strongly adhering mesenchyme. Contrary to conventional enzymatic tissue-separation methods, we blocked transcriptional activity prior to dissection and protected RNA from degradation during dissection, by the use of RNAlater. While RNAlater dehydrates specimens so severely that it interferes with visibility and clean dissection of organs or tissues, we established rehydration conditions that in fact facilitated tissue separation and shortened dissection time to about 10 minutes. The extracted RNA had an excellent quality, rendering it perfectly suitable for transcriptional profiling. Visual inspection of separated tissues and tissue specific gene expression analysis by microarray and RT-PCR confirmed that the tissues were separated with minimal or no cross-contamination. We show that this dissection method can be applied to a broad variety of organs, and that the tissue is still amenable to protein detection. In conclusion, this is a rapid, cheap and effective non-enzymatic tissue separation method which greatly facilitates the exploration of molecular mechanisms in organ formation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Microcirurgia/métodos , Animais , Derme/embriologia , Feminino , Glândulas Mamárias Animais/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/metabolismo , Ribonucleases/metabolismo , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...