Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Gland Surg ; 13(3): 351-357, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38601295

RESUMO

Background: Skin electrodes have been reported to be a useful alternative recording method for intraoperative neuromonitoring (IONM) and show typical electromyography (EMG) waveforms while overcoming the shortcomings of the EMG endotracheal tube. However, the skin electrodes showed relatively lower evoked amplitudes than other recording methods. In this study, we analyzed normative EMG data using skin electrodes and factors that affect the evoked amplitude of thyroid IONM. Methods: In total, 167 patients [242 nerves at risk (NAR)] who underwent thyroidectomy under IONM with adhesive skin electrodes were analyzed. A pair of skin electrodes was attached to the lateral border of the lamina of the thyroid cartilage. Evoked EMG data, including mean amplitude and latency, obtained after stimulation of the recurrent laryngeal nerve (RLN) and vagus nerve (VN), were collected and analyzed. Results: The mean amplitudes of RLN and VN recorded via skin electrodes were 255.48±96.53 and 236.15±69.72 µV, respectively. The mean latency of the right and left RLN was 3.22±0.03 and 3.49±0.08 mS, respectively. The mean latency of the right and left VN was 5.37±0.80 and 7.57±0.10 mS, respectively. The mean amplitude was significantly lower in the obesity, male, and total thyroidectomy (TT) groups. As body mass index (BMI) and age increased, the amplitude of EMG tended to decrease significantly. Conclusions: The evoked amplitude recorded with the skin electrodes was relatively low. A larger surgical extent, obesity, male sex, and age >55 years showed significantly lower evoked amplitudes.

2.
Pharmaceutics ; 16(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399343

RESUMO

Ischemic stroke-induced neuronal cell death leads to the permanent impairment of brain function. The Fas-mediating extrinsic apoptosis pathway and the cytochrome c-mediating intrinsic apoptosis pathway are two major molecular mechanisms contributing to neuronal injury in ischemic stroke. In this study, we employed a Fas-blocking peptide (FBP) coupled with a positively charged nona-arginine peptide (9R) to form a complex with negatively charged siRNA targeting Bax (FBP9R/siBax). This complex is specifically designed to deliver siRNA to Fas-expressing ischemic brain cells. This complex enables the targeted inhibition of Fas-mediating extrinsic apoptosis pathways and cytochrome c-mediating intrinsic apoptosis pathways. Specifically, the FBP targets the Fas/Fas ligand signaling, while siBax targets Bax involved in mitochondria disruption in the intrinsic pathway. The FBP9R carrier system enables the delivery of functional siRNA to hypoxic cells expressing the Fas receptor on their surface-a finding validated through qPCR and confocal microscopy analyses. Through intranasal (IN) administration of FBP9R/siCy5 to middle cerebral artery occlusion (MCAO) ischemic rat models, brain imaging revealed the complex specifically localized to the Fas-expressing infarcted region but did not localize in the non-infarcted region of the brain. A single IN administration of FBP9R/siBax demonstrated a significant reduction in neuronal cell death by effectively inhibiting Fas signaling and preventing the release of cytochrome c. The targeted delivery of FBP9R/siBax represents a promising alternative strategy for the treatment of brain ischemia.

3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203830

RESUMO

Apoptosis plays a crucial role in neuronal injury, with substantial evidence implicating Fas-mediated cell death as a key factor in ischemic strokes. To address this, inhibition of Fas-signaling has emerged as a promising strategy in preventing neuronal cell death and alleviating brain ischemia. However, the challenge of overcoming the blood-brain barrier (BBB) hampers the effective delivery of therapeutic drugs to the central nervous system (CNS). In this study, we employed a 30 amino acid-long leptin peptide to facilitate BBB penetration. By conjugating the leptin peptide with a Fas-blocking peptide (FBP) using polyethylene glycol (PEG), we achieved specific accumulation in the Fas-expressing infarction region of the brain following systemic administration. Notably, administration in leptin receptor-deficient db/db mice demonstrated that leptin facilitated the delivery of FBP peptide. We found that the systemic administration of leptin-PEG-FBP effectively inhibited Fas-mediated apoptosis in the ischemic region, resulting in a significant reduction of neuronal cell death, decreased infarct volumes, and accelerated recovery. Importantly, neither leptin nor PEG-FBP influenced apoptotic signaling in brain ischemia. Here, we demonstrate that the systemic delivery of leptin-PEG-FBP presents a promising and viable strategy for treating cerebral ischemic stroke. Our approach not only highlights the therapeutic potential but also emphasizes the importance of overcoming BBB challenges to advance treatments for neurological disorders.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Camundongos , Leptina/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Morte Celular , Peptídeos/farmacologia
4.
Small Methods ; 8(2): e2300266, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37183298

RESUMO

The superior optical properties of colloidal quantum dots (QDs) have garnered significant broad interest from academia and industry owing to their successful application in self-emitting QD-based light-emitting diodes (QLEDs). In particular, active research is being conducted on QLEDs with top-emission device architectures (TQLEDs) owing to their advantages such as easy integration with conventional backplanes, high color purity, and excellent light extraction. However, due to the complicated optical phenomena and their highly sensitive optoelectrical properties to experimental variations, TQLEDs cannot be optimized easily for practical use. This review summarizes previous studies that have investigated top-emitting device structures and discusses ways to advance the performance of TQLEDs. First, theories relevant to the optoelectrical properties of TQLEDs are introduced. Second, advancements in device optimization are presented, where the underlying theories for each are considered. Finally, multilateral strategies for TQLEDs to enable their wider application to advanced industries are discussed. This work believes that this review can provide valuable insights for realizing commercial TQLEDs applicable to a broad range of applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38082749

RESUMO

The COVID-19 pandemic has changed the lifestyle of society and the interest in health and fitness has greatly increased, accordingly. Recently, motorized devices that allow fine and automatic adjustment of resistance without physically changing the applied weight have been released to the market. In fact, these devices have eased the resistance-changing process. However, such devices are still not portable as they must be mounted on the wall and their resistance control needs to be improved to increase the efficiency of strength training. This study introduces a portable chair-shaped fitness device that allows inducing various resistance profiles. A compact, light, and robust cable-driven actuation module design was achieved by implementing a derailing prevention mechanism. The actuator covers resistance up to 120 N for each left and right arm separately. Exercise can be conducted by pulling the elastic handle connected to cable. The controller of the proposed device allows variation of resistance according to the joint range-of-motion (ROM) to make the workout more challenging but still safe through the full ROM. Viscous resistance, ascending resistance, and descending resistance profile can be provided. The experimental results shows that various muscle activation patterns can be provided by changing the resistance profile, which is important for effective training. The device can be used anywhere, at home or office, to perform various upper and lower body exercises or for physical self-care.


Assuntos
Força Muscular , Doenças Musculares , Humanos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Pandemias/prevenção & controle , Exercício Físico/fisiologia , Braço
6.
J Control Release ; 360: 1-14, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330013

RESUMO

Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a devastating inflammatory lung disease with a high mortality rate. ALI/ARDS is induced by various causes, including sepsis, infections, thoracic trauma, and inhalation of toxic reagents. Corona virus infection disease-19 (COVID-19) is also a major cause of ALI/ARDS. ALI/ARDS is characterized by inflammatory injury and increased vascular permeability, resulting in lung edema and hypoxemia. Currently available treatments for ALI/ARDS are limited, but do include mechanical ventilation for gas exchange and treatments supportive of reduction of severe symptoms. Anti-inflammatory drugs such as corticosteroids have been suggested, but their clinical effects are controversial with possible side-effects. Therefore, novel treatment modalities have been developed for ALI/ARDS, including therapeutic nucleic acids. Two classes of therapeutic nucleic acids are in use. The first constitutes knock-in genes for encoding therapeutic proteins such as heme oxygenase-1 (HO-1) and adiponectin (APN) at the site of disease. The other is oligonucleotides such as small interfering RNAs and antisense oligonucleotides for knock-down expression of target genes. Carriers have been developed for efficient delivery for therapeutic nucleic acids into the lungs based on the characteristics of the nucleic acids, administration routes, and targeting cells. In this review, ALI/ARDS gene therapy is discussed mainly in terms of delivery systems. The pathophysiology of ALI/ARDS, therapeutic genes, and their delivery strategies are presented for development of ALI/ARDS gene therapy. The current progress suggests that selected and appropriate delivery systems of therapeutic nucleic acids into the lungs may be useful for the treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Lesão Pulmonar Aguda/tratamento farmacológico , COVID-19/terapia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pulmão/irrigação sanguínea , Anti-Inflamatórios/uso terapêutico
7.
Life (Basel) ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374083

RESUMO

The natural product Kochiae Fructus (KF) is the ripe fruit of Kochia scoparia (L.) Schrad and is renowned for its anti-inflammatory, anticancer, anti-fungal, and anti-pruritic effects. This study examined the anticancer effect of components of KF to assess its potential as an adjuvant for cancer treatment. Network-based pharmacological and docking analyses of KF found associations with oral squamous cell carcinoma. The molecular docking of oleanolic acid (OA) with LC3 and SQSTM1 had high binding scores, and hydrogen binding with amino acids of the receptors suggests that OA is involved in autophagy, rather than the apoptosis pathway. For experimental validation, we exposed SCC-15 squamous carcinoma cells derived from a human tongue lesion to KF extract (KFE), OA, and cisplatin. The KFE caused SCC-15 cell death, and induced an accumulation of the autophagy marker proteins LC3 and p62/SQSTM1. The novelty of this study lies in the discovery that the change in autophagy protein levels can be related to the regulatory death of SCC-15 cells. These findings suggest that KF is a promising candidate for future studies to provide insight into the role of autophagy in cancer cells and advance our understanding of cancer prevention and treatment.

8.
Sci Rep ; 13(1): 8605, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244974

RESUMO

Continuous, comfortable, convenient (C3), and accurate blood pressure (BP) measurement and monitoring are needed for early diagnosis of various cardiovascular diseases. To supplement the limited C3 BP measurement of existing cuff-based BP technologies, though they may achieve reliable accuracy, cuffless BP measurement technologies, such as pulse transit/arrival time, pulse wave analysis, and image processing, have been studied to obtain C3 BP measurement. One of the recent cuffless BP measurement technologies, innovative machine-learning and artificial intelligence-based technologies that can estimate BP by extracting BP-related features from photoplethysmography (PPG)-based waveforms have attracted interdisciplinary attention of the medical and computer scientists owing to their handiness and effectiveness for both C3 and accurate, i.e., C3A, BP measurement. However, C3A BP measurement remains still unattainable because the accuracy of the existing PPG-based BP methods was not sufficiently justified for subject-independent and highly varying BP, which is a typical case in practice. To circumvent this issue, a novel convolutional neural network(CNN)- and calibration-based model (PPG2BP-Net) was designed by using a comparative paired one-dimensional CNN structure to estimate highly varying intrasubject BP. To this end, approximately [Formula: see text], [Formula: see text], and [Formula: see text] of 4185 cleaned, independent subjects from 25,779 surgical cases were used for training, validating, and testing the proposed PPG2BP-Net, respectively and exclusively (i.e., subject-independent modelling). For quantifying the intrasubject BP variation from an initial calibration BP, a novel 'standard deviation of subject-calibration centring (SDS)' metric is proposed wherein high SDS represents high intrasubject BP variation from the calibration BP and vice versa. PPG2BP-Net achieved accurately estimated systolic and diastolic BP values despite high intrasubject variability. In 629-subject data acquired after 20 minutes following the A-line (arterial line) insertion, low error mean and standard deviation of [Formula: see text] and [Formula: see text] for highly varying A-line systolic and diastolic BP values, respectively, where their SDSs are 15.375 and 8.745. This study moves one step forward in developing the C3A cuffless BP estimation devices that enable the push and agile pull services.


Assuntos
Hipertensão , Fotopletismografia , Humanos , Pressão Sanguínea/fisiologia , Fotopletismografia/métodos , Inteligência Artificial , Determinação da Pressão Arterial/métodos , Hipertensão/diagnóstico , Análise de Onda de Pulso/métodos
9.
Aging (Albany NY) ; 15(7): 2418-2432, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37036468

RESUMO

The mechanism underlying xerostomia after menopause has not yet been fully elucidated. This study aimed to investigate the mechanism of xerostomia and the effect of the ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (FER) on salivary gland dysfunction in a postmenopausal animal model. Twenty-four female Sprague-Dawley rats were randomly divided into four groups: a SHAM group (n = 6, sham-operated rats), an OVX group (n = 6, ovariectomized rats), an FER group (n = 6, ovariectomized rats injected intraperitoneally with FER), and a DFO group (n = 6, ovariectomized rats injected intraperitoneally with DFO). GPX4 activity, iron accumulation, lipid peroxidation, inflammation, fibrosis, and salivary gland function were analyzed. Recovery of GPX4 activity and a decrease in iron accumulation and cytosolic MDA + HAE were observed in the DFO group. In addition, collagen I, collagen III, TGF-ß, IL-6, TNF-α, and TGF-ß levels were decreased in the DFO group compared to the OVX group. Recovery of GPX4 activity and the morphology of mitochondria, and reduction of cytosolic MDA + HAE were also observed in the FER group. In addition, decreased expression of inflammatory cytokines and fibrosis markers and increased expression of AQP5 were observed in both the DFO and FER groups. Postmenopausal salivary gland dysfunction is associated with ferroptosis, and DFO and FER may reverse the postmenopausal salivary gland dysfunction after menopause. DFO and FER are hence considered promising treatments for postmenopausal xerostomia.


Assuntos
Desferroxamina , Xerostomia , Ratos , Feminino , Animais , Desferroxamina/farmacologia , Ratos Sprague-Dawley , Fibrose , Ferro , Glândulas Salivares , Fator de Crescimento Transformador beta
10.
Biomater Sci ; 11(9): 3354-3364, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36960861

RESUMO

Gene therapy has been suggested as a new treatment for acute lung injury (ALI), which is a severe inflammatory disease. Previously, amphiphilic polymeric carriers such as dexamethasone-conjugated polyethylenimine (PEI) (DP) have been used to transport plasmid DNA (pDNA) into the lungs. In the current study, hybrid nanoparticles comprising DP and cell membrane (CM) from LA-4 lung epithelial cells were developed for enhanced delivery of pDNA into the lungs. The CM components of the hybrid nanoparticles may interact with plasma membranes of target cells and facilitate intracellular uptake of pDNA. DP/CM/pDNA nanoparticles had the highest transfection efficiency into LA-4 cells at a weight ratio of 8 : 3 : 1. In vitro transfection assays showed that DP/CM/pDNA nanoparticles improved the cellular uptake and transfection efficiency of pDNA compared with PEI (25 kDa, PEI25k)/pDNA and DP/pDNA nanoparticles. The DP/CM/pDNA nanoparticles were approximately 80 nm in diameter with a zeta potential of +25 mV. To evaluate the therapeutic effects, heme oxygenase-1 pDNA (pHO-1) was administered to ALI animal models by intratracheal instillation. DP/CM/pHO-1 nanoparticles improved gene delivery efficiency compared with PEI25k/pHO-1 and DP/pHO-1 nanoparticles. As a result, inflammation in the lungs was alleviated by DP/CM/pHO-1 nanoparticles more effectively than by other nanoparticles. The results suggest that DP/CM/pDNA hybrid nanoparticles may be useful gene carriers for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Nanopartículas , Animais , Polímeros , Técnicas de Transferência de Genes , Terapia Genética , Transfecção , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , Pulmão/metabolismo , Plasmídeos/genética , DNA , Membrana Celular/metabolismo , Dexametasona , Polietilenoimina
11.
Bioeng Transl Med ; 8(2): e10426, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925699

RESUMO

The brain-targeted delivery of therapeutic oligonucleotides has been investigated as a new treatment modality for various brain diseases, such as brain tumors. However, delivery efficiency into the brain has been limited due to the blood-brain barrier. In this research, brain-targeted exosome-mimetic cell membrane nanovesicles (CMNVs) were designed to enhance the delivery of therapeutic oligonucleotides into the brain. First, CMNVs were produced by extrusion with isolated C6 cell membrane fragments. Then, CMNVs were decorated with cholesterol-linked T7 peptides as a targeting ligand by hydrophobic interaction, producing T7-CMNV. T7-CMNV was in aqueous solution maintained its nanoparticle size for over 21 days. The targeting and delivery effects of T7-CMNVs were evaluated in an orthotopic glioblastoma animal model. 2'-O-metyl and cholesterol-TEG modified anti-microRNA-21 oligonucleotides (AMO21c) were loaded into T7-CMNVs, and biodistribution experiments indicated that T7-CMNVs delivered AMO21c more efficiently into the brain than CMNVs, scrambled T7-CMNVs, lipofectamine, and naked AMO21c after systemic administration. In addition, AMO21c down-regulated miRNA-21 (miR-21) levels in glioblastoma tissue most efficiently in the T7-CMNVs group. This enhanced suppression of miR-21 resulted in the up-regulation of PDCD4 and PTEN. Eventually, brain tumor size was reduced in the T7-CMNVs group more efficiently than in the other control groups. With stability, low toxicity, and targeting efficiency, T7-CMNVs may be useful to the development of oligonucleotide therapy for brain tumors.

12.
J Korean Neurosurg Soc ; 66(2): 144-154, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36825298

RESUMO

OBJECTIVE: Stroke caused from large vessel occlusion (LVO) has emerged as the most common stroke subtype worldwide. Intravenous tissue plasminogen activator administration (IV-tPA) and additional intraarterial thrombectomy (IA-Tx) is regarded as standard treatment. In this study, the authors try to find the early recanalization rate of IV-tPA in LVO stroke patients. METHODS: Total 300 patients undertook IA-Tx with confirmed anterior circulation LVO, were analyzed retrospectively. Brain computed tomography angiography (CTA) was the initial imaging study and acute stroke magnetic resonance angiography (MRA) followed after finished IV-tPA. Early recanalization rate was evaluated by acute stroke MRA within 2 hours after the IV-tPA. In 167 patients undertook IV-tPA only and 133 non-recanalized patients by IV-tPA, additional IA-Tx tried (IV-tPA + IA-Tx group). And 131 patients, non-recanalized by IV-tPA (IV-tPA group) additional IA-Tx recommend and tried according to the patient condition and compliance. RESULTS: Early recanalization rate of LVO after IV-tPA was 12.0% (36/300). In recanalized patients, favorable outcome (modified Rankin Scale, 0-2) was 69.4% (25/36) while it was 32.1% (42/131, p<0.001) in non-recanalized patients. Among 133 patients, nonrecanalized after intravenous recombinant tissue plasminogen activator and undertook additional IA-Tx, the clinical outcome was better than not undertaken additional IA-Tx (favorable outcome was 42.9% vs. 32.1%, p=0.046). Analysis according to the perfusion/diffusion (P/D)-mismatching or not, in patient with IV-tPA with IA-Tx (133 patients), favorable outcome was higher in P/ D-mismatching patient (52/104; 50.0%) than P/D-matching patients (5/29; 17.2%; p=0.001). Which treatment tired, P/D-mismatching was favored in clinical outcome (iv-tPA only, p=0.008 and IV-tPA with IA-Tx, p=0.001). CONCLUSION: The P/D-mismatching influences on the recanalization and clinical outcomes of IV-tPA and IA-Tx. The authors would like to propose that we had better prepare IA-Tx when LVO is diagnosed on initial diagnostic imaging. Furthermore, if the patient shows P/D-mismatching on MRA after IV-tPA, additional IA-Tx improves treatment results and lessen the futile recanalization.

13.
J Adv Res ; 53: 249-260, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36632887

RESUMO

INTRODUCTION: miRNA-21 (miR-21) is highly expressed in glioblastoma, facilitating tumor growth by blocking the expression of apoptosis-related genes. Therefore, an antisense microRNA oligonucleotide (AMO) against miR-21 was suggested as a therapeutic nucleic acid for glioblastoma. OBJECTIVES: AMO21 co-micelles were developed with tumor-targeting T7 peptides as an AMO21 delivery system by intranasal administration. METHODS: Cholesterol-conjugated AMO21 (AMO21c) was mixed with cholesterol-conjugated T7 peptides (T7c) to produce tumor-targeted co-micelles. Physical characterization was performed by dynamic light scattering, gel retardation assay, scanning electron microscope and heparin competition assay. In vitro transfection efficiency to C6 glioblastoma cells was measured by flow cytometry. The AMO21c/T7c co-micelles were administered by intranasal instillation into the brain of intracranial glioblastoma rat models. Scrambled T7 (scrT7) and scrambled AMO21c (scrAMO21c) were used as a negative control. The therapeutic effects of the AMO21c/T7c co-micelles were evaluated by real time RT-PCR, immunohistochemistry, TUNEL assay, and Nissl staining. RESULTS: The formation of the AMO21c/T7c co-micelles was confirmed in gel retardation and heparin competition assays. The highest delivery efficiency in vitro was achieved at a 1:10 wt ratio of AMO21c/T7c. The AMO21c/T7c co-micelles had higher delivery efficiency into C6 glioblastoma cells than naked AMO21c or AMO21c/lipofectamine complexes. After intranasal administration into the intracranial glioblastoma models, the delivery efficiency of the co-micelles into the brain was also higher than those of naked AMO21c and AMO21c/scrambled T7c. Thanks to their enhanced delivery efficiency, the AMO21c/T7c co-micelles downregulated miR-21, inducing the production of the pro-apoptotic phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) proteins in the tumor tissues. The tumor size was reduced by the AMO21c/T7c co-micelles more effectively than naked AMO21c, AMO21c/lipofectamine, or scrAMO21c/T7c treatment. CONCLUSION: The results suggest that the co-micelles of AMO21c and T7c may be an efficient delivery system into a brain tumor through intranasal administration.


Assuntos
Glioblastoma , MicroRNAs , Ratos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Micelas , Oligonucleotídeos Antissenso/uso terapêutico , Linhagem Celular Tumoral , Peptídeos/uso terapêutico , Oligonucleotídeos/uso terapêutico , MicroRNAs/genética , Proteínas Reguladoras de Apoptose/uso terapêutico , Colesterol , Heparina/uso terapêutico
14.
BMB Rep ; 56(2): 90-95, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36195567

RESUMO

Mitochondria are important organelles that regulate adenosine triphosphate production, intracellular calcium buffering, cell survival, and apoptosis. They play therapeutic roles in injured cells via transcellular transfer through extracellular vesicles, gap junctions, and tunneling nanotubes. Astrocytes can secrete numerous factors known to promote neuronal survival, synaptic formation, and plasticity. Recent studies have demonstrated that astrocytes can transfer mitochondria to damaged neurons to enhance their viability and recovery. In this study, we observed that treatment with mitochondria isolated from rat primary astrocytes enhanced cell viability and ameliorated hydrogen peroxide-damaged neurons. Interestingly, isolated astrocytic mitochondria increased the number of cells under damaged neuronal conditions, but not under normal conditions, although the mitochondrial transfer efficiency did not differ between the two conditions. This effect was also observed after transplanting astrocytic mitochondria in a rat middle cerebral artery occlusion model. These findings suggest that mitochondria transfer therapy can be used to treat acute ischemic stroke and other diseases. [BMB Reports 2023; 56(2): 90-95].


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , AVC Isquêmico/metabolismo , Astrócitos/metabolismo , Neurônios/metabolismo , Mitocôndrias , Acidente Vascular Cerebral/metabolismo
15.
Gland Surg ; 11(11): 1744-1753, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36518800

RESUMO

Background: The surgical extent of 1-4 cm papillary thyroid carcinoma (PTC) is controversial. We aimed to determine the current trend in the extent of thyroidectomy and prophylactic central neck dissection (pCND) for 1.5 and 2.5 cm PTC, which are the most clinically controversial sizes. Methods: The questionnaire was sent to 342 Korean Society of Head and Neck Surgery and 160 one branch of Korean Endocrine Society members from June to July 2021 by e-mail. A questionnaire included extent of thyroidectomy [hemithyroidectomy (Hemi) vs. total thyroidectomy (TT)] and pCND according to the tumor location and degree of extrathyroidal extension (ETE) at 1.5 or 2.5 cm PTC. We compared the proportion of respondents' preference for each scenario. Results: Fifty-seven of 342 surgeons and twenty-seven of 160 endocrinologists responded to the questionnaire. At 1.5 and 2.5 cm PTC without ETE, both groups preferred Hemi, and there was no difference between the groups. When 1.5 or 2.5 cm PTC with anterior minimal ETE was suspected, the preference for Hemi by endocrinologists was significantly lower than that by surgeons (P<0.05). When anterior and posterior gross ETE were suspected, TT was preferred in both groups. When anterior gross ETE was suspected, the preference for Hemi by endocrinologists was significantly lower than that by surgeons (P<0.05). There was no difference between the groups in the posterior gross ETE. Surgeons preferred Hemi and endocrinologists preferred TT for a 1.5 cm PTC located in the isthmus. The pCND showed a similar pattern in both groups according to the size and location of the tumor and the degree of ETE. The proportion of Hemi did not differ between high-experience and low-experience endocrinologists. Also, there was no significant difference in preference for surgical extent between low-volume and high-volume surgeons. Conclusions: TT was frequently preferred in tumors with a large size or gross ETE, and pCND was frequently preferred in cases of suspected gross ETE. This study shows as the extent of thyroid surgery may differ between endocrinologists and surgeons and this could be confusing to patient and affect the patient outcomes. Therefore, multidisciplinary approach considering the extent of surgery for thyroid cancer is recommended.

16.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500003

RESUMO

This paper aims to discuss the key accomplishments and further prospects of active-matrix (AM) quantum-dot (QD) light-emitting diodes (QLEDs) display. We present an overview and state-of-the-art of QLEDs as a frontplane and non-Si-based thin-film transistors (TFTs) as a backplane to meet the requirements for the next-generation displays, such as flexibility, transparency, low power consumption, fast response, high efficiency, and operational reliability. After a brief introduction, we first review the research on non-Si-based TFTs using metal oxides, transition metal dichalcogenides, and semiconducting carbon nanotubes as the driving unit of display devices. Next, QLED technologies are analyzed in terms of the device structure, device engineering, and QD patterning technique to realize high-performance, full-color AM-QLEDs. Lastly, recent research on the monolithic integration of TFT-QLED is examined, which proposes a new perspective on the integrated device. We anticipate that this review will help the readership understand the fundamentals, current state, and issues on TFTs and QLEDs for future AM-QLED displays.

17.
J Neuroeng Rehabil ; 19(1): 144, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585676

RESUMO

BACKGROUND: Despite the benefits of physical activity for healthy physical and cognitive aging, 35% of adults over the age of 75 in the United States are inactive. Robotic exoskeleton-based exercise studies have shown benefits in improving walking function, but most are conducted in clinical settings with a neurologically impaired population. Emerging technology is starting to enable easy-to-use, lightweight, wearable robots, but their impact in the otherwise healthy older adult population remains mostly unknown. For the first time, this study investigates the feasibility and efficacy of using a lightweight, modular hip exoskeleton for in-community gait training in the older adult population to improve walking function. METHODS: Twelve adults over the age of 65 were enrolled in a gait training intervention involving twelve 30-min sessions using the Gait Enhancing and Motivating System for Hip in their own senior living community. RESULTS: Performance-based outcome measures suggest clinically significant improvements in balance, gait speed, and endurance following the exoskeleton training, and the device was safe and well tolerated. Gait speed below 1.0 m/s is an indicator of fall risk, and two out of the four participants below this threshold increased their self-selected gait speed over 1.0 m/s after intervention. Time spent in sedentary behavior also decreased significantly. CONCLUSIONS: This intervention resulted in greater improvements in speed and endurance than traditional exercise programs, in significantly less time. Together, our results demonstrated that exoskeleton-based gait training is an effective intervention and novel approach to encouraging older adults to exercise and reduce sedentary time, while improving walking function. Future work will focus on whether the device can be used independently long-term by older adults as an everyday exercise and community-use personal mobility device. Trial registration This study was retrospectively registered with ClinicalTrials.gov (ID: NCT05197127).


Assuntos
Exoesqueleto Energizado , Humanos , Idoso , Comportamento Sedentário , Vida Independente , Caminhada , Marcha , Terapia por Exercício/métodos
18.
Biomater Sci ; 10(23): 6698-6706, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36263591

RESUMO

Acute lung injury (ALI) is an inflammatory disease of the lungs. Curcumin (Cur) shows protective effects in ALI animal models. However, Cur is a hydrophobic drug and its administration into the lungs is inefficient due to its low bioavailability. In this study, glycyrrhizic acid (GA) micelles were produced and evaluated as a carrier of Cur for treatment of ALI. Cur-loaded GA (GA-Cur) nanoparticles were produced using an oil-in-water emulsion/solvent evaporation method. The size and surface charge of the GA-Cur nanoparticles were 159 nm and -23 mV, respectively. In lipopolysaccharide-activated RAW264.7 cells, the GA-Cur nanoparticles decreased the pro-inflammatory cytokine levels more efficiently than GA, Cur, or a simple mixture of GA and Cur (GA + Cur). This suggests that the GA-Cur nanoparticles improved the therapeutic efficiency by enhanced delivery of GA and Cur. GA-Cur inhibited the nuclear translocation of nuclear factor-κb and induced endogenous heme oxygenase-1 more efficiently than the other treatments. Furthermore, an in vitro toxicity test showed that GA-Cur had little cytotoxicity. In vivo therapeutic effects of GA-Cur were evaluated in ALI mouse models. GA-Cur was administered into the animals by intratracheal instillation. The results showed that GA-Cur reduced pro-inflammatory cytokines in a dose-dependent manner and did so more efficiently than GA, Cur, or GA + Cur. Furthermore, the hemolysis and infiltration of monocytes into the lungs were more effectively inhibited by GA-Cur than the other treatments. The data indicate that GA is an efficient carrier of Cur and an anti-inflammatory drug. Owing to their delivery efficiency and safety, GA-Cur nanoparticles will be useful for treatment of ALI.


Assuntos
Curcumina , Nanopartículas , Camundongos , Animais , Curcumina/química , Ácido Glicirrízico/farmacologia , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Pulmão , Excipientes , Citocinas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula
19.
ACS Appl Mater Interfaces ; 14(43): 48598-48608, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256595

RESUMO

The kinetic-sluggish oxygen evolution reaction (OER) is the main obstacle in electrocatalytic water splitting for sustainable production of hydrogen energy. Efficient water electrolysis can be ensured by lowering the overpotential of the OER by developing highly active catalysts. In this study, a controlled electrophoretic deposition strategy was used to develop a binder-free spinel oxide nanoparticle-coated Ni foam as an efficient electrocatalyst for water oxidation. Oxygen evolution was successfully promoted using the CoFe2O4 catalyst, and it was optimized by modulating the electrophoretic parameters. When optimized, CoFe2O4 nanoparticles presented more active catalytic sites, superior charge transfer, increased ion diffusion, and favorable reaction kinetics, which led to a small overpotential of 287 mV for a current density of 10 mA cm-2, with a small Tafel slope of 43 mV dec-1. Moreover, the CoFe2O4 nanoparticle electrode exhibited considerable long-term stability over 100 h without detectable activity loss. The results demonstrate promising potential for large-scale water splitting using Earth-abundant oxide materials via a simple and cheap fabrication process.

20.
Sci Adv ; 8(43): eabk1239, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306352

RESUMO

Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Animais , Reprogramação Celular/genética , Desmoplaquinas/genética , Peixe-Zebra , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...