Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(5): e0024822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214685

RESUMO

The interest and exploration of biodiversity in subsurface ecosystems have increased significantly during the last 2 decades. The aim of this study was to investigate the in vitro probiotic properties of spore-forming bacteria isolated from deep caves. Two hundred fifty spore-forming microbes were enriched from sediment samples from 10 different pristine caves in Algeria at different depths. Isolates showing nonpathogenic profiles were screened for their potential to produce digestive enzymes (gliadinase and beta-galactosidase) in solid and liquid media, respectively. Different probiotic potentialities were studied, including (i) growth at 37°C, (ii) survival in simulated gastric juice, (iii) survival in simulated intestinal fluid, and (iv) antibiotic sensitivity and cell surface properties. The results showed that out of 250 isolates, 13 isolates demonstrated nonpathogenic character, probiotic potentialities, and ability to hydrolyze gliadin and lactose in solution. These findings suggest that a selection of cave microbes might serve as a source of interesting candidates for probiotics. IMPORTANCE Previous microbial studies of subsurface ecosystems like caves focused mainly on the natural biodiversity in these systems. So far, only a few studies focused on the biotechnological potential of microbes in these systems, focusing in particular on their antibacterial potential, antibiotic production, and, to some extent, enzymatic potential. This study explores whether subsurface ecosystems can serve as an alternative source for microbes relevant to probiotics. The research focused on the ability of cave microbes to degrade two substrates (lactose and gliadin) that cause common digestive disorders. Since these enzymes may prove to be useful in food processing and in reducing the effect of lactose and gliadin digestion within intolerant patients, isolation of microbes such as in this study may expand the possibilities of developing alternative strategies to deal with these intolerances.


Assuntos
Gliadina , Probióticos , Humanos , Argélia , Lactose , Ecossistema , Bactérias , Esporos , Antibacterianos/farmacologia , beta-Galactosidase
2.
Syst Appl Microbiol ; 44(6): 126271, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34735802

RESUMO

The development of co-cultures of clostridial strains which combine different physiological traits represents a promising strategy to achieve the environmentally friendly production of biofuels and chemicals. For the optimization of such co-cultures it is essential to monitor their composition and stability throughout fermentation. FISH is a quick and sensitive method for the specific labeling and quantification of cells within microbial communities. This technique is neither limited by the anaerobic fermenter environment nor by the need of prior genetic modification of strains. In this study, two specific 23S rRNA oligonucleotide probes, ClosKluy and ClosCarb, were designed for the monitoring of C. kluyveri and C. carboxidivorans, respectively. After the optimization of hybridization conditions for both probes, which was achieved at 30% (v/v) formamide, a high specificity was observed with epifluorescence microscopy using cells from different pure reference strains. The discriminating properties of the ClosKluy and ClosCarb probes was verified with samples from heterotrophic co-cultures in anaerobic flasks as well as autotrophic stirred-tank bioreactor co-cultures of C. kluyveri and C. carboxidivorans. Besides being suited to monitor defined co-cultures of these two species, the new specific FISH oligonucleotide probes for C. kluyveri and C. carboxidivorans additionally have potential to be applied in environmental studies.


Assuntos
Clostridium kluyveri , Clostridium , Técnicas de Cocultura , Hibridização in Situ Fluorescente , Sondas de Oligonucleotídeos/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
3.
Mikrobiyol Bul ; 48(3): 385-401, 2014 Jul.
Artigo em Turco | MEDLINE | ID: mdl-25052105

RESUMO

Rapid and accurate diagnosis of mycobacteria is very important in the prevention and effective treatment of tuberculosis which is still a serious public health problem. Fluorescence in situ hybridization (FISH) method using rRNA targeted probes allows for precise and accurate identification of mixed microorganisms from cultures and directly from clinical samples within a few hours without the need for culture methods. In this study it was aimed to compare the diagnostic performance of two different FISH methods (Oligo-FISH and PNA-FISH) with the conventional culture methods for the identification of Mycobacterium spp. grown in BACTEC MGIT™ (Mycobacteria Growth Indicator Tube) system. A total of 60 MGIT (BD, USA) positive, 52 MGIT negative samples and 10 different reference strains were included in the study. 16S rRNA targeted oligonucleotide probes (Myc657: Mycobacterium subdivision, Eub338: Positive control, NonEub: Negative control) were used for oligo-FISH, and 16S rRNA targeted peptide nucleotide probes (MTC: Mycobacterium tuberculosis complex, NTM: Non-tuberculosis Mycobacterium, BacUni: Positive control) for PNA-FISH. Ehrlich-Ziehl-Neelsen staining (ARB) and Löwenstein-Jensen (LJ) culture methods were performed as conventional methods as well as MGIT 960 culture system. Of MGIT positive 60 samples (44 sputum, 4 tissue, 4 urine, 3 bronchoalveolar lavage, 3 CSF, 1 abscess, 1 peritoneal fluid), 29 (48.3%) were found positive for ARB and 44 (73.3%) with LJ culture methods giving a total of 59 positive results. Fifty-eight (96.6%) of those isolates were identified as MTC, and one (1.7%) as NTM by conventional methods. By using Oligo-FISH, 95% (57/60) of the isolates were identified as Mycobacterium spp., while three samples (5%) yielded negative result. By using PNA-FISH, 54 (91.5%) isolates were identified as mycobacteria, of them 53 (90%) were typed as MTC and 1 (1.7%) as NTM. Five isolates that were found positive with Oligo-FISH, but negative with PNA-FISH, yielded positive result with PNA-FISH method performed with minor modifications. It was determined that both FISH methods are more rapid (approximately 2-2.5 hours) and practical than the conventional culture methods and also PNA-FISH was more practical than Oligo-FISH. The sensitivity, specificity, positive and negative predictive values of the probes used for Oligo-FISH, were 96.6%, 100%, 100% and 96.4%, respectively. Those values for the probes used for PNA-FISH, were 91.5%, 100%, 100% and 91.4%, respectively (p< 0.0001). The compatibility of the methods was calculated with kappa statistical analysis, assigning perfect concordances between Oligo- and PNA-FISH methods, as well as between conventional and both of the FISH methods (κ: 0.964, 0.929, 0.964; p= 0.001). The coverage of oligonucleotide and PNA probes was also checked by using 16S rRNA gene sequence database retrieved from the SILVA 102. It was determined that the rates of coverage were 86.5% for Eub338, 41.7% for Myc657, 84.2% for BacUni, 76.3% for MTC (100% for only M.tuberculosis and M.bovis) and 25.8% for NTM probes. In conclusion, Oligo- and PNA-FISH methods seem to be successful for rapid and accurate identification of Mycobacterium spp. from MGIT positive cultures in routine mycobacteriology laboratories without the need for expensive methods.


Assuntos
Hibridização in Situ Fluorescente/métodos , Mycobacterium/classificação , Sondas RNA/normas , RNA Ribossômico 16S , Humanos , Hibridização in Situ Fluorescente/normas , Mycobacterium/isolamento & purificação , Sondas de Oligonucleotídeos , Ácidos Nucleicos Peptídicos/genética , Valor Preditivo dos Testes , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade
4.
Syst Appl Microbiol ; 33(2): 71-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20097027

RESUMO

Although there are several studies describing bacteria associated with marine fish, the bacterial composition associated with seahorses has not been extensively investigated since these studies have been restricted to the identification of bacterial pathogens. In this study, the phylogenetic affiliation of seahorse-associated bacteria was assessed by 16S rRNA gene sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rRNA analysis. Both methods revealed that Vibrionaceae was the dominant population in Artemia sp. (live prey) and intestinal content of the seahorses, while Rhodobacteraceae was dominant in water samples from the aquaculture system and cutaneous mucus of the seahorses. To our knowledge, this is the first time that bacterial communities associated with healthy seahorses in captivity have been described.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Smegmamorpha/microbiologia , Animais , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Pele/microbiologia
5.
ISME J ; 4(1): 98-110, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19675595

RESUMO

Microbial mats in sulfidic cave streams offer unique opportunities to study redox-based biogeochemical nutrient cycles. Previous work from Lower Kane Cave, Wyoming, USA, focused on the aerobic portion of microbial mats, dominated by putative chemolithoautotrophic, sulfur-oxidizing groups within the Epsilonproteobacteria and Gammaproteobacteria. To evaluate nutrient cycling and turnover within the whole mat system, a multidisciplinary strategy was used to characterize the anaerobic portion of the mats, including application of the full-cycle rRNA approach, the most probable number method, and geochemical and isotopic analyses. Seventeen major taxonomic bacterial groups and one archaeal group were retrieved from the anaerobic portions of the mats, dominated by Deltaproteobacteria and uncultured members of the Chloroflexi phylum. A nutrient spiraling model was applied to evaluate upstream to downstream changes in microbial diversity based on carbon and sulfur nutrient concentrations. Variability in dissolved sulfide concentrations was attributed to changes in the abundance of sulfide-oxidizing microbial groups and shifts in the occurrence and abundance of sulfate-reducing microbes. Gradients in carbon and sulfur isotopic composition indicated that released and recycled byproduct compounds from upstream microbial activities were incorporated by downstream communities. On the basis of the type of available chemical energy, the variability of nutrient species in a spiraling model may explain observed differences in microbial taxonomic affiliations and metabolic functions, thereby spatially linking microbial diversity to nutrient spiraling in the cave stream ecosystem.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Metagenômica , Archaea/genética , Bactérias Anaeróbias/genética , Carbono/metabolismo , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo , Sulfatos/metabolismo , Sulfetos/metabolismo , Água/análise , Wyoming
6.
J Microbiol Methods ; 78(2): 119-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19389431

RESUMO

Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2) concentrations and incubation time may be needed, depending on nature of sample and should therefore always be individually determined for each study.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Biofilmes , Hibridização in Situ Fluorescente/métodos , Microbiologia da Água , Purificação da Água/métodos , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Peroxidases/antagonistas & inibidores , Compostos de Amônio Quaternário/metabolismo , Sensibilidade e Especificidade
7.
Syst Appl Microbiol ; 32(3): 186-92, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19217232

RESUMO

Few reports on in situ mRNA detection in bacteria have been published, even though a major aim in environmental microbiology is to link function/activity to the identity of the organisms. This study reports a reliable approach for the in situ detection of nifH mRNA using fluorescence hybridization based on a previously described protocol for pmoA. nifH codes for a dinitrogenase reductase, a key enzyme in dinitrogen fixation. nifH mRNA was hybridized with a digoxigenin-labelled polynucleotide probe. The hybrid was detected with an anti-DIG-antibody labelled with horseradish peroxidase. Subsequently, the signal was amplified by catalyzed reporter deposition (CARD) with fluorochrome-labelled tyramides. Furthermore, the imaged organisms were identified using standard fluorescence in situ hybridization of rRNA. Thus, the approach enabled us specifically to link in situ the information from the dinitrogen fixation activity of an organism to its identity. Unexpectedly, the signals derived from nifH mRNA hybridization showed a distinct uneven pattern within the cells. This indicated that the method used could even give insights about the localization of the detected mRNA within the cell, which is a potential use of mRNA fluorescence in situ hybridization (FISH) that has not been reported up to now for bacterial cells.


Assuntos
Azotobacter vinelandii , Hibridização in Situ Fluorescente/métodos , Klebsiella oxytoca , Oxirredutases , RNA Mensageiro , Azotobacter vinelandii/classificação , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Azotobacter vinelandii/isolamento & purificação , Técnicas de Tipagem Bacteriana , Klebsiella oxytoca/classificação , Klebsiella oxytoca/enzimologia , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Fixação de Nitrogênio , Sondas de Oligonucleotídeos , Oxirredutases/genética , Oxirredutases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Environ Microbiol ; 9(6): 1523-34, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17504489

RESUMO

Lower Kane Cave, Wyoming (USA), has hydrogen sulfide-bearing springs that discharge into the cave passage. The springs and cave stream harbour white filamentous microbial mats dominated by Epsilonproteobacteria. Recently, novel 16S rRNA gene sequences from the phylum Acidobacteria, subgroup 7, were found in these cave mats. Although Acidobacteria are ubiquitously distributed in many terrestrial and marine habitats, little is known about their ecophysiology. To investigate this group in Lower Kane Cave in more detail, a full-cycle rRNA approach was applied based on 16S and 23S rRNA gene clone libraries and the application of novel probes for fluorescence in situ hybridization. The 16S and 23S rRNA gene clone libraries yielded seven and six novel acidobacterial operational taxonomic units (OTUs) respectively. The majority of the OTUs were affiliated with subgroups 7 and 8. One OTU was affiliated with subgroup 6, and one OTU could not be assigned to any of the present acidobacterial subgroups. Fluorescence in situ hybridization distinguished two morphologically distinct, rod-shaped cells of the acidobacterial subgroups 7 and 8. Although the ecophysiology of Acidobacteria from Lower Kane Cave will not be fully resolved until cultures are obtained, acidobacterial cells were always associated with the potentially chemolithoautotrophic epsilon- or gammaproteobacterial filaments, suggesting perhaps a lifestyle based on heterotrophy or chemoorganotrophy.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Carbono/metabolismo , Água Doce/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Ecossistema , Meio Ambiente , Água Doce/análise , Fenômenos Geológicos , Geologia , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...