Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
medRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38633782

RESUMO

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

2.
MethodsX ; 12: 102563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38328504

RESUMO

Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.

3.
Front Microbiol ; 14: 1274925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098666

RESUMO

Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood-brain barrier to treat Parkinson's disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients' GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host's GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine.

4.
Viruses ; 15(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37766336

RESUMO

SARS-CoV-2, responsible for the COVID-19 pandemic, invades host cells via its spike protein, which includes critical binding regions, such as the receptor-binding domain (RBD), the S1/S2 cleavage site, the S2 cleavage site, and heptad-repeat (HR) sections. Peptides targeting the RBD and HR1 inhibit binding to host ACE2 receptors and the formation of the fusion core. Other peptides target proteases, such as TMPRSS2 and cathepsin L, to prevent the cleavage of the S protein. However, research has largely ignored peptides targeting the S1/S2 cleavage site. In this study, bioinformatics was used to investigate the binding of the S1/S2 cleavage site to host proteases, including furin, trypsin, TMPRSS2, matriptase, cathepsin B, and cathepsin L. Peptides targeting the S1/S2 site were designed by identifying binding residues. Peptides were docked to the S1/S2 site using HADDOCK (High-Ambiguity-Driven protein-protein DOCKing). Nine peptides with the lowest HADDOCK scores and strong binding affinities were selected, which was followed by molecular dynamics simulations (MDSs) for further investigation. Among these peptides, BR582 and BR599 stand out. They exhibited relatively high interaction energies with the S protein at -1004.769 ± 21.2 kJ/mol and -1040.334 ± 24.1 kJ/mol, respectively. It is noteworthy that the binding of these peptides to the S protein remained stable during the MDSs. In conclusion, this research highlights the potential of peptides targeting the S1/S2 cleavage site as a means to prevent SARS-CoV-2 from entering cells, and contributes to the development of therapeutic interventions against COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Catepsina L , Pandemias , SARS-CoV-2 , Peptídeos , Peptídeo Hidrolases
5.
Pathogens ; 12(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37624007

RESUMO

BACKGROUND: The COVID-19 pandemic poses an unprecedented public health challenge in Malaysia. The impact of COVID-19 varies between countries, including geographically divided states within a country. The deadly transmission of COVID-19 has taken a heavy toll in Sabah, Malaysia's third most populous state, contributing nearly 10% to the recorded national death toll as of 31 December 2022. Although several SARS-CoV-2 genome sequences have been analysed in Malaysia, molecular epidemiology data from Sabah focusing on the diversity and evolution of SARS-CoV-2 variants are still lacking. This study examines the major SARS-CoV-2 variants and emerging mutations from Sabah, the Malaysian Borneo, which is geographically divided from West Malaysia by the South China Sea. METHODS: A total of 583 COVID-19 samples were subjected to whole genome sequencing and analysed with an additional 1123 Sabah COVID-19 sequences retrieved from the GISAID EpiCoV consortium. Nextclade and Pangolin were used to classify these sequences according to the clades and lineages. To determine the molecular evolutionary characteristics, Bayesian time-scaled phylogenetic analysis employing the maximum likelihood algorithm was performed on selected SARS-CoV-2 genome sequences, using the Wuhan-Hu-1 sequence as a reference. RESULTS: Sabah was affected starting from the second COVID-19 wave in Malaysia, and the early sequences were classified under the O clade. The clade was gradually replaced during subsequent waves by G, GH, GK and GRA, with the latter being dominant as of December 2022. Phylogenetically, the Delta isolates in this study belong to the three main subclades 21A, 21J and 21I, while Omicron isolates belong to 21M, 21L and 22B. The time-scaled phylogeny suggested that SARS-CoV-2 introduced into Sabah originated from Peninsular Malaysia in early March 2020, and phylodynamic analysis indicated that increased viral spread was observed in early March and declined in late April, followed by an evolutionary stationary phase in June 2020. CONCLUSION: Continuous molecular epidemiology of SARS-CoV-2 in Sabah will provide a deeper understanding of the emergence and dominance of each variant in the locality, thus facilitating public health intervention measures.

6.
Data Brief ; 46: 108877, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36691562

RESUMO

The Streptomyces cavourensis strain 2BA6PGT was isolated from sediment from the bottom of the salt lake Verkhnee Beloe (Buryatia, Russia). This strain's 7,651,223 bp complete genome has a high G + C content of 72.1% and consists of 7,069 coding sequences and 315 subsystems. The 16S ribosomal RNA of isolate 2BA6PGT was most closely related to Streptomyces cavourensis strain NBRC 13026T (98.91% identity), followed by Streptomyces bacillaris strain ATCC 15855T (95.36%), Streptomyces rhizosphaericola strain 1AS2cT (94.68%), and Streptomyces pluricolorescens strain JCM 4602T (86.75%). These comparisons were supported by pairwise comparisons using average nucleotide identity (ANI) and DNA-DNA hybridization analysis. This is the first complete genome reported on Streptomyces cavourensis isolated from sediment from the bottom of the salt lake Verkhnee Beloe. The complete genome sequence has been deposited at the NCBI GenBank with an accession number CP101140.

7.
Front Nutr ; 9: 1031935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407542

RESUMO

Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.

8.
J Med Life ; 15(8): 951-954, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36188644

RESUMO

Medicinal plants have been widely used in healthcare based on traditional knowledge. We investigated the antimicrobial activities and phytochemical contents of a plant known as Blumea balsamifera (B. balsamifera), which Sabah native people have used for health benefits. Methanolic extracts and fractions of the leaves of B. balsamifera were tested for their phytochemical contents and their antimicrobial activities against four Gram-negative and five Gram-positive strains of bacteria. The extracts of B. balsamifera showed antimicrobial activities against three Gram-positive, and one Gram-negative bacteria, with the zone of inhibition ranging from 7.8 mm±0.41 to 10.5 mm±0.71. Fraction CE.F7 exerted the broadest antimicrobial activity towards four Gram-positive or Gram-negative bacteria. The phytochemical constituents identified in the extracts were alkaloid, flavonoid, steroid, and cardiac glycosides. The plant extract demonstrated antimicrobial activities and contained multiple phytochemical constituents. Further investigations into potential antimicrobial agents containing promising fractions would validate the medicinal properties of B. balsamifera used in Sabah.


Assuntos
Anti-Infecciosos , Asteraceae , Glicosídeos Cardíacos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Asteraceae/química , Flavonoides , Humanos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Esteroides
9.
Pathogens ; 11(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297258

RESUMO

COVID-19, which emerged in December 2019, was declared a global pandemic by the World Health Organization (WHO) in March 2020. The disease was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has caused millions of deaths worldwide and caused social and economic disruption. While clinical trials on therapeutic drugs are going on in an Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership collaboration, current therapeutic approaches and options to counter COVID-19 remain few. Therapeutic drugs include the FDA-approved antiviral drugs, Remdesivir, and an immune modulator, Baricitinib. Hence, therapeutic approaches and alternatives for COVID-19 treatment need to be broadened. This paper discusses efforts in approaches to find treatment for COVID-19, such as inhibiting viral entry and disrupting the virus life cycle, and highlights the gap that needs to be filled in these approaches.

10.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230679

RESUMO

Cancer is regarded as one of the most common and leading causes of death. Despite the availability of conventional treatments against cancer cells, current treatments are not the optimal treatment for cancer as they possess the possibility of causing various unwanted side effects to the body. As a result, this prompts a search for an alternative treatment without exhibiting any additional side effects. One of the promising novel therapeutic candidates against cancer is an antimicrobial peptide produced by bacteria called bacteriocin. It is a non-toxic peptide that is reported to exhibit potency against cancer cell lines. Experimental studies have outlined the therapeutic potential of bacteriocin against various cancer cell lines. In this review article, the paper focuses on the various bacteriocins and their cytotoxic effects, mode of action and efficacies as therapeutic agents against various cancer cell lines.

11.
Genes (Basel) ; 13(7)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886012

RESUMO

Single nucleotide polymorphisms (SNPs) in the ß-like globin gene of the human hosts to the risk of malaria are unclear. Therefore, this study investigates these associations in the Sabah population, with a high incidence of malaria cases. In brief, DNA was extracted from 188 post-diagnostic blood samples infected with Plasmodium parasites and 170 healthy controls without a history of malaria. Genotyping of the ß-like globin C-158T, G79A, C16G, and C-551T SNPs was performed using a polymerase chain reaction-restriction fragment length polymorphism approach. Risk association, linkage disequilibrium (LD), and haplotype analyses of these SNPs were assessed. This study found that the variant allele in the C-158T and C16G SNPs were protective against malaria infections by 0.5-fold, while the variant allele in the G79A SNP had a 6-fold increased risk of malaria infection. No SNP combination was in perfect LD, but several haplotypes (CGCC, CGCT, and CGGC) were identified to link with different correlation levels of malaria risk in the population. In conclusion, the C-158T, G79A, and C16G SNPs in the ß-like globin gene are associated with the risk of malaria. The haplotypes (CGCC, CGCT, and CGGC) identified in this study could serve as biomarkers to estimate malaria risk in the population. This study provides essential data for the design of malaria control and management strategies.


Assuntos
Globinas , Malária , Bornéu , Globinas/genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Malária/epidemiologia , Malária/genética , Malásia , Polimorfismo de Nucleotídeo Único
12.
Molecules ; 27(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744912

RESUMO

The caseinolytic protease (Clp) system plays an essential role in the protein homeostasis of the malaria parasite, particularly at the stage of apicoplast development. The inhibition of this protein is known to have a lethal effect on the parasite and is therefore considered an interesting avenue for antimalaria drugs discovery. The catalytic activity of the Clp system is modulated by its proteolytic subunit (ClpP), which belongs to the serine protease family member and is therefore extensively studied for further inhibitors development. Among many inhibitors, the group of ß-lactone is known to be a specific inhibitor for ClpP. Nevertheless, other groups of lactones have never been studied. This study aims to characterize the catalytic properties of ClpP of Plasmodium knowlesi (Pk-ClpP) and the inhibition properties of a δ-lactone hyptolide against this protein. Accordingly, a codon-optimized synthetic gene encoding Pk-ClpP was expressed in Escherichia coli BL21(DE3) and purified under a single step of Ni2+-affinity chromatography, yielding a 2.20 mg from 1 L culture. Meanwhile, size-exclusion chromatography indicated that Pk-ClpP migrated primarily as homoheptameric with a size of 205 kDa. The specific activity of pure Pk-ClpP was 0.73 U µg-1, with a catalytic efficiency kcat/KM of 0.05 µM-1 s-1, with optimum temperature and pH of 50 °C and 7.0-7.5, respectively. Interestingly, hyptolide, a member of δ-lactone, was shown to inhibit Pk-ClpP with an IC50 value of 17.36 ± 1.44 nM. Structural homology modelling, secondary structure prediction, and far-UV CD spectra revealed that helical structures dominate this protein. In addition, the structural homology modeling showed that this protein forms a barrel-shaped homoheptamer. Docking simulation revealed that the inhibition was found to be a competitive inhibition in which hyptolide was able to dock into the catalytic site and block the substrate. The competitiveness of hyptolide is due to the higher binding affinity of this molecule than the substrate.


Assuntos
Plasmodium knowlesi , Domínio Catalítico , Escherichia coli , Lactonas/farmacologia , Serina Proteases
13.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408690

RESUMO

Dibutyl phthalate (DBP) produced by Streptomyces sp. H11809 exerted inhibitory activity against human GSK-3ß (Hs GSK-3ß) and Plasmodiumfalciparum 3D7 (Pf 3D7) malaria parasites. The current study aimed to determine DBP's plausible mode of action against Hs GSK-3ß and Pf 3D7. Molecular docking analysis indicated that DBP has a higher binding affinity to the substrate-binding site (pocket 2; -6.9 kcal/mol) than the ATP-binding site (pocket 1; -6.1 kcal/mol) of Hs GSK-3ß. It was suggested that the esters of DBP play a pivotal role in the inhibition of Hs GSK-3ß through the formation of hydrogen bonds with Arg96/Glu97 amino acid residues in pocket 2. Subsequently, an in vitro Hs GSK-3ß enzymatic assay revealed that DBP inhibits the activity of Hs GSK-3ß via mixed inhibition inhibitory mechanisms, with a moderate IC50 of 2.0 µM. Furthermore, the decrease in Km value with an increasing DBP concentration suggested that DBP favors binding on free Hs GSK-3ß over its substrate-bound state. However, the antimalarial mode of action of DBP remains unknown since the generation of a Pf 3D7 DBP-resistant clone was not successful. Thus, the molecular target of DBP might be indispensable for Pf survival. We also identified nocardamine as another active compound from Streptomyces sp. H11809 chloroform extract. It showed potent antimalarial activity with an IC50 of 1.5 µM, which is ~10-fold more potent than DBP, but with no effect on Hs GSK-3ß. The addition of ≥12.5 µM ferric ions into the Pf culture reduced nocardamine antimalarial activity by 90% under in vitro settings. Hence, the iron-chelating ability of nocardamine was shown to starve the parasites from their iron source, eventually inhibiting their growth.


Assuntos
Antimaláricos , Streptomyces , Antimaláricos/farmacologia , Dibutilftalato , Glicogênio Sintase Quinase 3 beta , Humanos , Simulação de Acoplamento Molecular , Peptídeos Cíclicos
14.
Artigo em Inglês | MEDLINE | ID: mdl-35206404

RESUMO

More than 1.75 million COVID-19 infections and 16 thousand associated deaths have been reported in Malaysia. A meta-analysis on the prevalence of COVID-19 in different clinical stages before the National COVID-19 Vaccination Program in Malaysia is still lacking. To address this, the disease severity of a total of 215 admitted COVID-19 patients was initially recorded in the early phase of this study, and the data were later pooled into a meta-analysis with the aim of providing insight into the prevalence of COVID-19 in 5 different clinical stages during the outset of the COVID-19 pandemic in Malaysia. We have conducted a systematic literature search using PubMed, Web of Science, Scopus, ScienceDirect, and two preprint databases (bioRxiv and medRxiv) for relevant studies with specified inclusion and exclusion criteria. The quality assessment for the included studies was performed using the Newcastle-Ottawa Scale. The heterogeneity was examined with an I2 index and a Q-test. Funnel plots and Egger's tests were performed to determine publication bias in this meta-analysis. Overall, 5 studies with 6375 patients were included, and the pooled prevalence rates in this meta-analysis were calculated using a random-effect model. The highest prevalence of COVID-19 in Malaysia was observed in Stage 2 cases (32.0%), followed by Stage 1 (27.8%), Stage 3 (17.1%), Stage 4 (7.6%), and Stage 5 (3.4%). About two-thirds of the number of cases have at least one morbidity, with the highest percentage of hypertension (66.7%), obesity (55.5%), or diabetes mellitus (33.3%) in Stage 5 patients. In conclusion, this meta-analysis suggested a high prevalence of COVID-19 occurred in Stage 2. The prevalence rate in Stage 5 appeared to be the lowest among COVID-19 patients before implementing the vaccination program in Malaysia. These meta-analysis data are critically useful for designing screening and vaccination programs and improving disease management in the country.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Malásia/epidemiologia , Pandemias/prevenção & controle , Prevalência , SARS-CoV-2 , Vacinação
15.
Curr Pharm Biotechnol ; 23(13): 1596-1611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034591

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/epidemiologia , COVID-19/genética , Humanos , Peptidil Dipeptidase A/genética , Preparações Farmacêuticas , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética , Serina/genética , Índice de Gravidade de Doença , Receptor 7 Toll-Like/genética
16.
Data Brief ; 36: 107128, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095378

RESUMO

The genome data of Streptomyces sp. FH025 comprised of 8,381,474 bp with a high GC content of 72.51%. The genome contains 7035 coding sequences spanning 1261 contigs. Streptomyces sp. FH025 contains 57 secondary metabolite gene clusters including polyketide synthase, nonribosomal polyketide synthase and other biosynthetic pathways such as amglyccycl, butyrolactone, terpenes, siderophores, lanthipeptide-class-iv, and ladderane. 16S rRNA analysis of Streptomyces sp. FH025 is similar to the Streptomyces genus. This whole genome project has been deposited at NCBI under the accession JAFLNG000000000.

17.
J Mol Neurosci ; 71(10): 2085-2094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33479916

RESUMO

The rs9958947 single nucleotide polymorphism (SNP) resides in the promoter region of the lipase G (LIPG) gene. This newly discovered SNP increases the risk of stroke in some Asian populations, including Chinese and Korean populations. Stroke is one of the top 5 leading causes of death in Malaysia, so it is of interest to investigate whether this SNP is associated with stroke risk in the Malaysian population. Therefore, this study investigates this association through a case-control study on a Malaysian population along with a comprehensive meta-analysis. Genotyping of LIPG rs9958947 SNP was performed for 241 Malaysians using real-time polymerase chain reaction, and the odds ratios (OR) with 95% confidence intervals were calculated. The meta-analysis was conducted using the software Comprehensive Meta-Analysis ver. 2.2.064. A p value less than 0.05 was considered statistically significant. We observed that the mean age of Malaysian stroke patients was less than that of stroke patients from Korea and China. The meta-analysis showed that the LIPG rs9958947 SNP was significantly associated with an increased risk of ischemic stroke in Asian populations (dominant (CC vs. CT + TT): OR = 1.45, p < 0.001; allelic (C vs. T): OR = 1.21, p = 0.001; heterozygous (CC vs. CT): OR = 1.47, p < 0.001, and homozygous (CC vs. TT): OR = 1.46, p = 0.047). However, there was no evidence to associate this SNP with stroke risk in the Malaysian population (overall CC vs. CT: OR = 1.04, CC vs. TT: OR = 1.25, CC vs. CT + TT, OR = 1.13; all p > 0.05) and blood lipid levels.


Assuntos
Lipase/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Malásia , Masculino , Pessoa de Meia-Idade
18.
Malar J ; 19(1): 377, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092594

RESUMO

BACKGROUND: Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia. METHODS: A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3. RESULTS: The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp. CONCLUSIONS: The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.


Assuntos
Variação Genética , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , Bornéu , Malásia
19.
Artigo em Inglês | MEDLINE | ID: mdl-33050119

RESUMO

Alpha(α)-thalassemia is a blood disorder caused by many types of inheritable α-globin gene mutations which causes no-to-severe clinical symptoms, such as Hb Bart's hydrops fetalis that leads to early foetal death. Therefore, the aim of this meta-analysis was to provide an update from year 2010 to 2020 on the prevalence of α-thalassemia in Southeast Asia. A systematic literature search was performed using PubMed and SCOPUS databases for related studies published from 2010 to 2020, based on specified inclusion and exclusion criteria. Heterogeneity of included studies was examined with the I2 index and Q-test. Funnel plots and Egger's tests were performed in order to determine publication bias in this meta-analysis. Twenty-nine studies with 83,674 subjects were included and pooled prevalence rates in this meta-analysis were calculated using random effect models based on high observed heterogeneity (I2 > 99.5, p-value < 0.1). Overall, the prevalence of α-thalassemia is 22.6%. The highest α-thalassemia prevalence was observed in Vietnam (51.5%) followed by Cambodia (39.5%), Laos (26.8%), Thailand (20.1%), and Malaysia (17.3%). No publication bias was detected. Conclusions: This meta-analysis suggested that a high prevalence of α-thalassemia occurred in selected Southeast Asia countries. This meta-analysis data are useful for designing thalassemia screening programs and improve the disease management.


Assuntos
Talassemia alfa , Sudeste Asiático/epidemiologia , Humanos , Prevalência , Talassemia alfa/epidemiologia
20.
Bioimpacts ; 8(3): 159-165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211075

RESUMO

Introduction: Obesity is commonly linked up with several life-threatening diseases. This study aims to investigate the association of fatty acid synthase (FASN) rs4246445, rs2229425, rs2228305, and rs2229422 single nucleotide polymorphisms (SNPs) with the risk of overweight and obesity in the Malaysian population. Methods: Blood samples were collected from 1030 individuals who were grouped into normal, overweight, and obese categories. Blood biochemistry test and lipid profiling were performed and genomic DNA was extracted. Genotyping was performed using hydrolysis probes and odd ratio with 95% CI was calculated for risk association analysis. Linkage disequilibrium and haplotypes analyses were carried out using SHEsis software. Results: We found that the hemoglobin and white blood cell counts were significantly high in the obese subjects. There is a lack of evidence to link the FASN SNPs with the risk of overweight and obesity in the population. All 4 SNPs were seemed to be in linkage equilibrium. Five common haplotypes were identified in this study but none of them was significantly associated with overweight and obesity in the population. Conclusion: Our findings suggest a lack of evidence to associate the FASN rs4246445, rs2229425, rs2228305, and rs2229422 SNPs with the risk of overweight and obesity in the Malaysian population. All 4 SNPs were independent of each other and not all identified haplotypes were significantly associated with overweight and obesity in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...