Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 5(4): 1050-1057, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32223147

RESUMO

Although battery-free gas sensors (e.g., photovoltaic or triboelectric sensors) have recently appeared to resolve the power consumption issue of conventional chemiresistors, severe technical barriers still remain. Especially, their signals varying under ambient conditions such as light intensity restrict the utilization of these sensors. Insufficient sensing performances (low response and slow sensing rate) of previous battery-free sensors are also an obstacle for practical use. Herein, a photovoltaic hydrogen (H2)-sensing platform having constant sensing responses regardless of light conditions is demonstrated. The platform consists of two photovoltaic units: (1) a palladium (Pd)-decorated n-IGZO/p-Si photodiode covered with a microporous zeolitic imidazolate framework-8 (ZIF-8) film and (2) a device with the same configuration, but without the Pd catalyst as a reference to calibrate the base current of sensor (1). The platform after calibration yields accurate response values in real time regardless of unknown irradiance. Besides, the sensing performances (e.g., sensing response of 1.57 × 104% at 1% H2 with a response time <15 s) of our platform are comparable with those of the conventional resistive H2 sensors, which yield unprecedented results in photovoltaic H2 sensors.


Assuntos
Hidrogênio/química , Luz , Calibragem
2.
Nanoscale ; 11(47): 22813-22819, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31750490

RESUMO

As an alternative to silicon-based solar cells, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted much attention and achieved a comparable power conversion efficiency (PCE) to silicon-based ones, although the perovskite materials can absorb only visible light. Hence, the challenge remains to enhance the PCE utilizing near infrared (NIR) light in the solar light spectrum. One of the easiest ways to utilize the NIR is to incorporate NIR active materials in PSCs such as up-conversion nanoparticles (UCNPs); however, such a stratergy is not simple to adopt in PSCs due to the inherent vurnerability of perovskite materials towards moisture. In this work, we present NIR-utilizing PSCs by locating UCNPs within the PSC structure by a simple dry transfer method. A maximum PCE of 15.56% was obtained in the case of PSC having the UCNPs located between the hole transport layer (HTL) and gold (Au) top electrode, which is an 8.4% enhancement compared to the cell without the UCNPs. This enhancement came from the combined effects of NIR light utilization and the surface plasmon resonance (SPR) phenomenon originating from the Au top electrode, which was interfacing the UCNPs.

3.
RSC Adv ; 9(26): 14868-14875, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35516303

RESUMO

As promising photo-absorbing materials for photovoltaics, organic-inorganic hybrid perovskite materials such as methylammonium lead iodide and formamidinium lead iodide, have attracted lots of attention from many researchers. Among the various factors to be considered for high power conversion efficiency (PCE) in perovskite solar cells (PSCs), increasing the grain size of perovskite is most important. However, it is difficult to obtain a highly crystalline perovskite film with large grain size by using the conventional hot-plate annealing method because heat is transferred unidirectionally from the bottom to the top. In this work, we presented radiative thermal annealing (RTA) to improve the structural and electrical properties of perovskite films. Owing to the omnidirectional heat transfer, swift and uniform nuclei formation was possible within the perovskite film. An average grain size of 500 nm was obtained, which is 5 times larger than that of the perovskite film annealed on a hot-plate. This perovskite film led to an enhancement of photovoltaic performance of PSCs. Both short-circuit current density and PCE of the PSCs prepared by RTA were improved by 10%, compared to those of PSCs prepared by hot-plate annealing.

4.
Nanoscale ; 10(45): 21168-21177, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30411778

RESUMO

ZnO nanomaterials are promising building blocks for an efficient UV photodetector; however, their slow sensing behavior and undesired response to visible light, which are attributed to surface defects, such as oxygen or zinc vacancies, are challenges that remain to be addressed. Here, we transformed the ZnO nanorod surface into a zeolitic imidazolate framework-8 (ZIF-8) to eliminate ZnO surface defects. Vertical-type photodetectors were fabricated incorporating a Schottky junction at the ZIF-8/gold (Au) top electrode and could respond to UV light with a rapid response and recovery (1-2 s) and demonstrated a UV-to-visible rejection ratio in the order of 103, qualifying them as efficient visible-blind UV photodetectors. It is noteworthy that the ZIF-8 layer effectively separated the photogenerated electron-hole pairs, and thus reduced their recombination probability. The enhanced photodetector displayed excellent figures-of-merit: a responsivity of 291 A W-1 and a detectivity of 5.9 × 1013 cm Hz1/2 W-1 under illumination at 295 nm.

5.
J Nanosci Nanotechnol ; 16(6): 6364-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427719

RESUMO

We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 µm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature (100 degrees C to 300 degrees C). Accordingly, the threshold voltage (V(T)) was shifted towards positive voltage (-12.2 V to 10.8 V). In case of channel thickness, the V(T) was shifted towards negative voltage with increasing the channel thickness. The device with channel thickness of 90 nm annealed at 200 degrees C revealed the best device performances in terms of mobility (10.86 cm2/Vs) and V(T) (0.8 V). The effect of channel length was also studied, in which the channel width, thickness and annealing temperature were kept constant such as 500 nm, 90 nm and 200 degrees C, respectively. The channel length influenced the on-current level significantly with small variation of V(T), resulting in lower value of on/off current ratio with increasing the channel length. The device with channel length of 0.5 µm showed enhanced on/off current ratio of 10(6) with minimum V(T) of 0.26 V.

6.
Adv Mater ; 27(43): 6945-52, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26439187

RESUMO

A lithographically aligned palladium nano-ribbon (Pd-NRB) array with gaps of less than 40 nm is fabricated on a poly(ethylene terephthalate) substrate using the direct metal transfer method. The 200 µm Pd-NRB hydrogen gas sensor exhibits an unprecedented sensitivity of 10(9) % after bending treatment, along with fast sensing behavior (80% response time of 3.6 s and 80% recovery time of 8.7 s) at room temperature.

7.
Nanoscale ; 7(32): 13489-94, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26198752

RESUMO

Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.

8.
Nanoscale Res Lett ; 10(1): 961, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26068077

RESUMO

We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2.

9.
ACS Appl Mater Interfaces ; 6(15): 13293-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25050896

RESUMO

Polymer residue-free graphene nanoribbons (GNRs) of 200 nm width at 1 µm pitch were periodically generated in an area of 1 cm(2) via laser interference lithography using a chromium interlayer prior to photoresist coating. High-quality GNRs were evidenced by atomic force microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy measurements. Palladium nanoparticles were then deposited on the GNRs as catalysts for sensing hydrogen gases, and the GNR array was utilized as an electrically conductive path with less electrical noise. The palladium-decorated GNR array exhibited a rectangular sensing curve with unprecedented rapid response and recovery properties: 90% response within 60 s at 1000 ppm and 80% recovery within 90 s in nitrogen ambient. In addition, reliable and repeatable sensing behaviors were revealed when the array was exposed to various gas concentrations even at 30 ppm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA