Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3606-3613, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483316

RESUMO

We reversibly control ferromagnetic-antiferromagnetic ordering in an insulating ground state by annealing tensile-strained LaCoO3 films in hydrogen. This ionic-magnetic coupling occurs due to the hydrogen-driven topotactic transition between perovskite LaCoO3 and brownmillerite La2Co2O5 at a lower temperature (125-200 °C) and within a shorter time (3-10 min) than the oxygen-driven effect (500 °C, tens of hours). The X-ray and optical spectroscopic analyses reveal that the transition results from hydrogen-driven filling of correlated electrons in the Co 3d-orbitals, which successively releases oxygen by destabilizing the CoO6 octahedra into CoO4 tetrahedra. The transition is accelerated by surface exchange, diffusion of hydrogen in and oxygen out through atomically ordered oxygen vacancy "nanocomb" stripes in the tensile-strained LaCoO3 films. Our ionic-magnetic coupling with fast operation, good reproducibility, and long-term stability is a proof-of-principle demonstration of high-performance ultralow power magnetic switching devices for sensors, energy, and artificial intelligence applications, which are keys for attaining carbon neutrality.

2.
Adv Sci (Weinh) ; 11(16): e2308588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375965

RESUMO

In this study, the development and characterization of 2D ferroelectric field-effect transistor (2D FeFET) devices are presented, utilizing nanoscale ferroelectric HfZrO2 (HZO) and 2D semiconductors. The fabricated device demonstrated multi-level data storage capabilities. It successfully emulated essential biological characteristics, including excitatory/inhibitory postsynaptic currents (EPSC/IPSC), Pair-Pulse Facilitation (PPF), and Spike-Timing Dependent Plasticity (STDP). Extensive endurance tests ensured robust stability (107 switching cycles, 105 s (extrapolated to 10 years)), excellent linearity, and high Gmax/Gmin ratio (>105), all of which are essential for realizing multi-level data states (>7-bit operation). Beyond mimicking synaptic functionalities, the device achieved a pattern recognition accuracy of ≈94% on the Modified National Institute of Standards and Technology (MNIST) handwritten dataset when incorporated into a neural network, demonstrating its potential as an effective component in neuromorphic systems. The successful implementation of the 2D FeFET device paves the way for the development of high-efficiency, ultralow-power neuromorphic hardware which is in sub-femtojoule (48 aJ/spike) and fast response (1 µs), which is 104 folds faster than human synapse (≈10 ms). The results of the research underline the potential of nanoscale ferroelectric and 2D materials in building the next generation of artificial intelligence technologies.

3.
Nano Converg ; 10(1): 50, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897535

RESUMO

In this work, we find that La-doped BaSnO3 (BLSO) is shown to be a promising electromagnetic shielding transparent conductor. While films grown on industrially practical optoelectronic MgAl2O4 substrates have higher sheet resistance by three orders of magnitude than in previous reports, we show how to recover the sheet resistance close to the single-crystal level by use of an MgO template layer which enables high quality (001)-oriented BLSO epitaxial film growth on (001) MgAl2O4. There is a positive correlation between crystallinity and conductivity; high crystallinity minimizes scattering of free electrons. By applying this design principle to 5-20% doped films, we find that highly crystalline 5% La-doped BLSO films exhibit low sheet resistance of ~ 8.7 Ω â–¯ -1, high visible transmittance of ~ 80%, and high X-band electromagnetic shielding effectiveness of ~ 25.9 dB, thus outperforming transparent conducting oxides films of Sn-doped In2O3 and SrMoO3.

4.
Nano Lett ; 23(15): 6815-6822, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499099

RESUMO

Owing to its pseudocapacitive, unidimensional, rapid ion channels, TiO2(B) is a promising material for application to battery electrodes. In this study, we align these channels by epitaxially growing TiO2(B) films with the assistance of an isostructural VO2(B) template layer. In a liquid electrolyte, binder-free TiO2(B) epitaxial electrodes exhibit a supercapacity near the theoretical value of 335 mA h g-1 and an excellent charge-discharge reproducibility for ≥200 cycles, which outperform those of other TiO2(B) nanostructures. For the all-solid-state configuration employing the LiPON solid electrolyte, excellent stability persists. Our findings suggest excellent potential for miniaturizing all-solid-state nanobatteries in self-powered integrated circuits.

5.
Nano Converg ; 10(1): 9, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790607

RESUMO

Transparent La-doped BaSnO3 (BLSO) epitaxial films grown on expensive perovskites show promising conductive properties. However, BLSO films on Al2O3 have a higher sheet resistance by two orders of magnitude. In this research, the sheet resistance of BLSO films is recovered to that of the single-crystalline level by growing (111)-oriented BLSO epitaxial films on (0001)Al2O3 with the assistance of (111)BaZrO3/MgO template bilayer. Their intriguing transparent conductive properties, including high electromagnetic shielding effectiveness (~ 13.2 dB at 10 GHz) and high stability at 700 °C, will promote stable optoelectronic applications in extreme environments with economic benefits.

6.
Nano Lett ; 22(16): 6573-6579, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939658

RESUMO

Despite being a requisite for modern transparent electronics, few metals have a sufficiently high infrared transmittance due to the free electron response. Here, upon alloying the correlated metal SrVO3 with BaVO3, the medium wavelength infrared transmittance at a wavelength of 4 µm is found to be 50% higher than those for Sn-doped In2O3 (ITO) and La-doped BaSnO3 (BLSO). The room temperature resistivity of the alloy of ∼100 µΩ cm is 1 order of magnitude lower than those of ITO and BLSO, guaranteeing a profound electromagnetic shielding effectiveness of 22-31 dB at 10 GHz in the X-band. Systematic investigations reveal symmetry breaking of VO6 oxygen octahedra in SrVO3 due to the substitution of Sr2+ with larger Ba2+ ions, localization of electrons in the lower energy V-dyz and dzx orbitals, and stronger correlation effects. The lattice-orbital-charge-coupled engineering of the electronic band structure in correlated metals offers a new design strategy to create super-broad-band transparent conductors with an enhanced shielding capability.

7.
Adv Mater ; 33(11): e2007606, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576067

RESUMO

The dynamic tuning of ion concentrations has attracted significant attention for creating versatile functionalities of materials, which are impossible to reach using classical control knobs. Despite these merits, the following fundamental questions remain: how do ions affect the electronic bandstructure, and how do ions simultaneously change the electrical and magnetic properties? Here, by annealing platinum-dotted La0.67 Sr0.33 MnO3 films in hydrogen and argon at a lower temperature of 200 °C for several minutes, a reversible change in resistivity is achieved by three orders of magnitude with tailored ferromagnetic magnetization. The transition occurs through the tuning of the double exchange interaction, ascribed to an electron-doping-induced and/or a lattice-expansion-induced modulation, along with an increase in the hydrogen concentration. High reproducibility, long-term stability, and multilevel linearity are appealing for ionic-electric-magnetic coupled applications.

8.
Biosens Bioelectron ; 171: 112717, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059169

RESUMO

This paper reports a new biocompatible conductivity enhancement of poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) films for biomedical applications. Conductivity of PEDOT:PSS layer was reproducibly from 0.495 to 125.367 S cm-1 by hydrothermal (HT) treatment. The HT treatment employs water (relative humidity > 80%) and heat (temperature > 61 °C) instead of organic solvent doping and post-treatments, which can leave undesirable residue. The treatment can be performed using the sterilizing conditions of an autoclave. Additionally, it is possible to simultaneously reduce the electrical resistance, and sterilize the electrode for practical use. The key to conductivity enhancement was the structural rearrangement of PEDOT:PSS, which was determined using atomic force microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy. It was found that PEDOT inter-bridging occurred as a result of the structural rearrangement. Therefore, the conductivity increased on account of the continuous conductive pathways of the PEDOT chains. To test the biocompatible enhancement technique for biomedical applications, certain demonstrations, such as the monitoring of joint movements and skin temperature, and measuring electrocardiogram signals were conducted with the hydrothermal-treated PEDOT:PSS electrode. This simple, biocompatible treatment exhibited significant potential for use in other biomedical applications as well.


Assuntos
Técnicas Biossensoriais , Poliestirenos , Compostos Bicíclicos Heterocíclicos com Pontes , Condutividade Elétrica , Polímeros
9.
ACS Nano ; 14(11): 16114-16121, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33140970

RESUMO

Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.

10.
Sci Rep ; 10(1): 9721, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546737

RESUMO

Applications of correlated vanadium dioxides VO2(A) and VO2(B) in electrical devices are limited due to the lack of effective methods for tuning their fundamental properties. We find that the resistivity of VO2(A) and VO2(B) is widely tunable by doping them with tungsten ions. When x < 0.1 in V1-xWxO2(A), the resistivity decreases drastically by four orders of magnitude with increasing x, while that of V1-xWxO2(B) shows the opposite behaviour. Using spectroscopic ellipsometry and X-ray photoemission spectroscopy, we propose that correlation effects are modulated by either chemical-strain-induced redistribution of V-V distances or electron-doping-induced band filling in V1-xWxO2(A), while electron scattering induced by disorder plays a more dominant role in V1-xWxO2(B). The tunable resistivity makes correlated VO2(A) and VO2(B) appealing for next-generation electronic devices.

11.
Sci Rep ; 10(1): 4957, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188914

RESUMO

Infrared transparent electrodes (IR-TEs) have recently attracted much attention for industrial and military applications. The simplest method to obtain high IR transmittance is to reduce the electrode film thickness. However, for films several tens of nanometres thick, this approach unintentionally suppresses conduction due to surface electron scattering. Here, we demonstrate low sheet resistance (<400 Ω â–¡-1 at room temperature) and high IR transmittance (>65% at the 2.5-µm wavelength) in Sn-doped In2O3 (ITO) epitaxial films for the thickness range of 17-80 nm. A combination of X-ray spectroscopy and ellipsometry measurements reveals a persistent electronic bandstructure in the 8-nm-thick film compared to much thicker films. This indicates that the metallicity of the film is preserved, despite the ultrathin film configuration. The high carrier mobility in the ITO epitaxial films further confirms the film's metallicity as a result of the improved crystallinity of the film and the resulting reduction in the scattering defect concentration. Thus, ITO shows great potential for IR-TE applications of transparent photovoltaic and optoelectronic devices.

12.
Adv Mater ; 31(28): e1901322, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31106484

RESUMO

Three central themes in the study of the phenomenon of resistive switching are the nature of the conducting phase, why it forms, and how it forms. In this study, the answers to all three questions are provided by performing switching experiments in situ in a transmission electron microscope on thin films of the model system polycrystalline SrTiO3 . On the basis of high-resolution transmission electron microscopy, electron-energy-loss spectroscopy and in situ current-voltage measurements, the conducting phase is identified to be SrTi11 O20 . This phase is only observed at specific grain boundaries, and a Ruddlesden-Popper phase, Sr3 Ti2 O7 , is typically observed adjacent to the conducting phase. These results allow not only the proposal that filament formation in this system has a thermodynamic origin-it is driven by electrochemical polarization and the local oxygen activity in the film decreasing below a critical value-but also the deduction of a phase diagram for strongly reduced SrTiO3 . Furthermore, why many conducting filaments are nucleated at one electrode but only one filament wins the race to the opposite electrode is also explained. The work thus provides detailed insights into the origin and mechanisms of filament generation and rupture.

13.
Adv Sci (Weinh) ; 4(8): 1700045, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28852622

RESUMO

This study demonstrates that precise control of nonequilibrium growth conditions during pulsed laser deposition (PLD) can be exploited to produce single-crystalline anatase TiO2 nanobrush architectures with large surface areas terminated with high energy {001} facets. The data indicate that the key to nanobrush formation is controlling the atomic surface transport processes to balance defect aggregation and surface-smoothing processes. High-resolution scanning transmission electron microscopy data reveal that defect-mediated aggregation is the key to TiO2 nanobrush formation. The large concentration of defects present at the intersection of domain boundaries promotes aggregation of PLD growth species, resulting in the growth of the single-crystalline nanobrush architecture. This study proposes a model for the relationship between defect creation and growth mode in nonequilibrium environments, which enables application of this growth method to novel nanostructure design in a broad range of materials.

14.
Nano Lett ; 17(4): 2229-2233, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28266858

RESUMO

Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO2(B) films that one can accomplish the theoretical limit for capacity with persistent charging-discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO2(B) provide the most stable sites for Li adsorption and diffusion. Thus, this work ultimately demonstrates that VO2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.

15.
Sci Rep ; 6: 38168, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27909313

RESUMO

Direct observations using scanning transmission electron microscopy unveil an intriguing interfacial bi-layer that enables epitaxial growth of a strain-free, monoclinic, bronze-phase VO2(B) thin film on a perovskite SrTiO3 (STO) substrate. We observe an ultrathin (2-3 unit cells) interlayer best described as highly strained VO2(B) nanodomains combined with an extra (Ti,V)O2 layer on the TiO2 terminated STO (001) surface. By forming a fully coherent interface with the STO substrate and a semi-coherent interface with the strain-free epitaxial VO2(B) film above, the interfacial bi-layer enables the epitaxial connection of the two materials despite their large symmetry and lattice mismatch.

16.
Nat Commun ; 7: 12721, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27596572

RESUMO

Strong Coulomb repulsion and spin-orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin-orbit entangled 3d-5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials.

17.
Nat Commun ; 7: 12373, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27491392

RESUMO

Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼10(12) inch(-2)). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

18.
Sci Rep ; 6: 30579, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466086

RESUMO

Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response.

19.
Nanoscale ; 8(15): 8083-90, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27020599

RESUMO

Ferromagnetic insulating thin films of Sm(0.34)Sr(0.66)MnO3 (SSMO) on (001) SrTiO3 substrates with a T(C) of 140 K were formed in self-assembled epitaxial nanocomposite thin films. High T(C) ferromagnetism was enabled through vertical epitaxy of the SSMO matrix with embedded, stiff, ∼40 nm Sm2O3 nanopillars giving a c/a ratio close to 1 in the SSMO. In contrast, bulk and single phase SSMO films of the same composition have much stronger tetragonal distortion, the bulk having c/a >1 and the films having c/a <1, both of which give rise to antiferromagnetic coupling. The work demonstrates a unique and simple route to creating ferromagnetic insulators for spintronics applications where currently available ferromagnetic insulators are either hard to grow and/or have very low T(C).

20.
Sci Rep ; 6: 19621, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26787259

RESUMO

The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...