Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10779-10787, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37987745

RESUMO

Electrochemical reduction of CO2 using Cu catalysts enables the synthesis of C2+ products including C2H4 and C2H5OH. In this study, Cu catalysts were fabricated using plasma-enhanced atomic layer deposition (PEALD), achieving conformal deposition of catalysts throughout 3-D gas diffusion electrode (GDE) substrates while maintaining tunable control of Cu nanoparticle size and areal loading. The electrochemical CO2 reduction at the Cu surface yielded a total Faradaic efficiency (FE) > 75% for C2+ products. Parasitic hydrogen evolution was minimized to a FE of ∼10%, and a selectivity of 42.2% FE for C2H4 was demonstrated. Compared to a line-of-sight physical vapor deposition method, PEALD Cu catalysts show significant suppression of C1 products compared to C2+, which is associated with improved control of catalyst morphology and conformality within the porous GDE substrate. Finally, PEALD Cu catalysts demonstrated a stable performance for 15 h with minimal reduction in the C2H4 production rate.

2.
J Am Chem Soc ; 145(42): 23068-23075, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37807716

RESUMO

Cations in an electrolyte modulate microenvironments near the catalyst surface and affect product distribution from an electrochemical CO2 reduction reaction, and thus, their interaction with intermediate states has been tried to be probed. Herein, we directly observed the cation effect on *CO intermediates on the Cu(OH)2-derived catalyst in real time through operando surface-enhanced Raman spectroscopy at high overpotentials (-1.0 VRHE). Atop *CO peaks are composed of low-frequency binding *CO (*COLFB) and high-frequency binding *CO (*COHFB) because of their adsorption sites. These two *CO intermediates are found to have different sensitivities to the cation-induced field, and each *CO is proposed to be suitably stabilized for efficient C-C coupling. The proportions between *COHFB and *COLFB are dependent on the type of alkali cations, and the increases in the *COHFB ratio have a high correlation with selective C2H4 production under K+ and Cs+, indicating that *COHFB is the dominant and fast active species. In addition, as the hydrated cation size decreases, *COLFB is more sensitively red-shifted than *COHFB, which promotes C-C coupling and suppresses C1 products. Through time-resolved operando measurements, dynamic changes between the two *CO species are observed, showing the rapid initial adsorption of *COHFB and subsequently reaching a steady ratio between *COLFB and *COHFB.

3.
Photodiagnosis Photodyn Ther ; 41: 103317, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738904

RESUMO

PURPOSE: This study aimed to evaluate the antimicrobial effect of photodynamic therapy (PDT) against Staphylococcus aureus biofilm on a titanium surface and to compare the differences in the effect of PDT using toluidine blue O (TBO) and methylene blue (MB) as a photosensitizer. METHODS: The bacterial strain S. aureus ATCC 25,923 was used. Sandblasted and acid-etched (SLA) disks were divided into the following six groups: phosphate buffer saline (PBS), TBO, MB, PBS with laser (PBS + L), TBO with laser (TBO + L), and MB with laser (MB + L). The laser group samples were irradiated by a cold diode laser for 60 s. After treatment, the number of surviving bacteria was calculated by counting the colony-forming units (CFUs) and confocal laser scanning microscopy (CLSM) was applied to observe the bacteria on the disk surface. RESULTS: The TBO + L and MB + L groups showed significantly lower CFU/ml than the other groups (p < 0.01). The TBO + L group showed significantly lower CFU/ml than the MB + L group (p = 0.032). There was no significant difference between the PBS, TBO, MB, and PBS + L groups. Within the limitations of this in vitro study, PDT with TBO and MB can effectively reduce S. aureus biofilm on SLA titanium surfaces. TBO is more effective than MB as a photosensitizer. PDT with TBO may be applied to the treatment of peri­implant disease in the future.


Assuntos
Fotoquimioterapia , Infecções Estafilocócicas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus , Fotoquimioterapia/métodos , Titânio/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Lasers Semicondutores , Cloreto de Tolônio/farmacologia
4.
Ophthalmol Sci ; 2(2): 100147, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36249697

RESUMO

Purpose: To develop and validate an automated deep learning (DL)-based artificial intelligence (AI) platform for diagnosing and grading cataracts using slit-lamp and retroillumination lens photographs based on the Lens Opacities Classification System (LOCS) III. Design: Cross-sectional study in which a convolutional neural network was trained and tested using photographs of slit-lamp and retroillumination lens photographs. Participants: One thousand three hundred thirty-five slit-lamp images and 637 retroillumination lens images from 596 patients. Methods: Slit-lamp and retroillumination lens photographs were graded by 2 trained graders using LOCS III. Image datasets were labeled and divided into training, validation, and test datasets. We trained and validated AI platforms with 4 key strategies in the AI domain: (1) region detection network for redundant information inside data, (2) data augmentation and transfer learning for the small dataset size problem, (3) generalized cross-entropy loss for dataset bias, and (4) class balanced loss for class imbalance problems. The performance of the AI platform was reinforced with an ensemble of 3 AI algorithms: ResNet18, WideResNet50-2, and ResNext50. Main Outcome Measures: Diagnostic and LOCS III-based grading prediction performance of AI platforms. Results: The AI platform showed robust diagnostic performance (area under the receiver operating characteristic curve [AUC], 0.9992 [95% confidence interval (CI), 0.9986-0.9998] and 0.9994 [95% CI, 0.9989-0.9998]; accuracy, 98.82% [95% CI, 97.7%-99.9%] and 98.51% [95% CI, 97.4%-99.6%]) and LOCS III-based grading prediction performance (AUC, 0.9567 [95% CI, 0.9501-0.9633] and 0.9650 [95% CI, 0.9509-0.9792]; accuracy, 91.22% [95% CI, 89.4%-93.0%] and 90.26% [95% CI, 88.6%-91.9%]) for nuclear opalescence (NO) and nuclear color (NC) using slit-lamp photographs, respectively. For cortical opacity (CO) and posterior subcapsular opacity (PSC), the system achieved high diagnostic performance (AUC, 0.9680 [95% CI, 0.9579-0.9781] and 0.9465 [95% CI, 0.9348-0.9582]; accuracy, 96.21% [95% CI, 94.4%-98.0%] and 92.17% [95% CI, 88.6%-95.8%]) and good LOCS III-based grading prediction performance (AUC, 0.9044 [95% CI, 0.8958-0.9129] and 0.9174 [95% CI, 0.9055-0.9295]; accuracy, 91.33% [95% CI, 89.7%-93.0%] and 87.89% [95% CI, 85.6%-90.2%]) using retroillumination images. Conclusions: Our DL-based AI platform successfully yielded accurate and precise detection and grading of NO and NC in 7-level classification and CO and PSC in 6-level classification, overcoming the limitations of medical databases such as few training data or biased label distribution.

5.
Environ Res ; 211: 113116, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35304112

RESUMO

Electrochemical conversion of CO2 to fuels and chemicals as a sustainable solution for waste transformation has garnered tremendous interest to combat the fervent issue of the prevailing high atmospheric CO2 concentration while contributing to the generation of sustainable energy. Monometallic palladium (Pd) has been shown promising in electrochemical CO2 reduction, producing formate or CO depending on applied potentials. Recently, bimetallic Pd-based materials strived to fine-tune the binding affinity of key intermediates is a prominent strategy for the desired product formation from CO2 reduction. Herein, the recent emerging trends on bimetallic Pd-based electrocatalysts are reviewed, including fundamentals of CO2 electroreduction and material engineering of bimetallic Pd-electrocatalysts categorized by primary products. Modern analytical techniques on these novel electrocatalysts are also thoroughly studied to get insights into reaction mechanisms. Lastly, we deliberate over the challenges and prospects for Pd-based catalysts for electrochemical CO2 conversion.

6.
Photodiagnosis Photodyn Ther ; 38: 102767, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182778

RESUMO

PURPOSE: The purpose of this study was to evaluate the antimicrobial effects of photothermal therapy using indocyanine green (ICG) and an 810-nm infrared diode laser on Streptococcus gordonii biofilm attached to zirconia surfaces in vitro. METHODS: A biofilm was formed using the static method on zirconia disks placed in a 24-well plate. The biofilms were subdivided into the following six treatment groups: control, commercial photodynamic therapy (PDT), chlorhexidine gluconate (CHX), laser only (L, 810-nm infrared diode), ICG, and laser with ICG (PTT). After treatment, each disk was agitated and the solution with detached bacteria was spread directly on a blood agar plate. Cells were cultured under anaerobic conditions and colony-forming units were counted. Confocal laser-scanning microscopy was used to assess the survival according to the height of the biofilm. RESULTS: The PTT, PDT, and CHX groups showed a significant reduction in S. gordonii viability (p<0.05), while the L and ICG groups showed no significant difference compared to the control group (p = 0.32, p = 0.97; respectively). In confocal laser-scanning microscopy images, the PTT, PDT, and CHX groups presented most of the dead bacteria in both the upper and lower levels of biofilm. CONCLUSION: Within the limitations of this in vitro study, PTT with ICG was effective in significantly reducing the viability of S. gordonii bacteria on zirconia. Further studies are needed to establish a standardized PTT protocol to treat peri­implant diseases.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Verde de Indocianina/farmacologia , Lasers Semicondutores , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica , Streptococcus gordonii , Zircônio
7.
Small Methods ; 6(5): e2200074, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35212468

RESUMO

Copper-based catalysts have attracted enormous attention due to their high selectivity for C2+ products during the electrochemical reduction of CO2 (CO2 RR). In particular, grain boundaries on the catalysts contribute to the generation of various Cu coordination environments, which have been found essential for C-C coupling. However, smooth-surfaced Cu2 O nanocrystals generally lack the ability for the surface reorganization to form multiple grain boundaries and desired Cu undercoordination sites. Flow chemistry armed with the unparalleled ability to mix reaction mixture can achieve a very high concentration of unstable reaction intermediates, which in turn are used up rapidly to lead to kinetics-driven nanocrystal growth. Herein, the synthesis of a unique hierarchical structure of Cu2 O with numerous steps (h-Cu2 O ONS) via flow chemistry-assisted modulation of nanocrystal growth kinetics is reported. The surface of h-Cu2 O ONS underwent rapid surface reconstruction under CO2 RR conditions to exhibit multiple heterointerfaces between Cu2 O and Cu phases, setting the preferable condition to facilitate C-C bond formation. Notably, the h-Cu2 O ONS obtained the increased C2 H4 Faradaic efficiency from 31.9% to 43.5% during electrocatalysis concurrent with the morphological reorganization, showing the role of the stepped surface. Also, the h-Cu2 O ONS demonstrated a 3.8-fold higher ethylene production rate as compared to the Cu2 O nanocube.

8.
J Am Chem Soc ; 143(14): 5386-5395, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33725440

RESUMO

Pd is one of the most effective catalysts for the electrochemical reduction of CO2 to formate, a valuable liquid product, at low overpotential. However, the intrinsically high CO affinity of Pd makes the surface vulnerable to CO poisoning, resulting in rapid catalyst deactivation during CO2 electroreduction. Herein, we utilize the interaction between metals and metal-organic frameworks to synthesize atomically dispersed Au on tensile-strained Pd nanoparticles showing significantly improved formate production activity, selectivity, and stability with high CO tolerance. We found that the tensile strain stabilizes all reaction intermediates on the Pd surface, whereas the atomically dispersed Au selectively destabilizes CO* without affecting other adsorbates. As a result, the conventional COOH* versus CO* scaling relation is broken, and our catalyst exhibits 26- and 31-fold enhancement in partial current density and mass activity toward electrocatalytic formate production with over 99% faradaic efficiency, compared to Pd/C at -0.25 V versus RHE.

9.
J Periodontal Implant Sci ; 51(1): 53-62, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33634615

RESUMO

PURPOSE: This study aimed to evaluate the clinical and microbiological efficacy of adjunctive local delivery of minocycline (Periocline®) in patients receiving supportive periodontal therapy (SPT) after initial treatment. METHODS: The participants were 16 men and 8 women (age, 20-65 years) who had at least 15 natural teeth, underwent SPT for more than 1 year due to chronic periodontitis, had 4 or more periodontal pocket sites deeper than 5 mm, and showed >25% gingival bleeding on probing (BoP). They were randomly assigned to the test and control groups. In the test group, mechanical debridement and local antibiotic delivery were performed for all periodontal sulci/pockets; in the control group, mechanical debridement and saline irrigation were performed. In patients who underwent SPT for more than 1 year, clinical and microbiological examinations were performed at baseline and 1 and 3 months after SPT. The clinical examination included an assessment of the periodontal pocket depth, clinical attachment level, plaque index, and BoP. Microbial tests were performed using real-time polymerase chain reaction; the relative ratios of Porphyromonas gingivalis and Fusobacterium nucleatum were determined. RESULTS: Both groups showed significant improvements in clinical parameters at 1 and 3 months from baseline; there were no significant changes between months 1 and 3. Intergroup differences were insignificant. The microbiological analysis revealed no significant differences in P. gingivalis and F. nucleatum ratios across time points. While intergroup differences were insignificant, there was a tendency for the P. gingivalis and F. nucleatum ratios to decrease in the test group. CONCLUSIONS: Mechanical debridement in patients receiving maintenance therapy resulted in clinically significant improvement; the effectiveness of additional local delivery of antibiotics was not significant. The ratios of P. gingivalis and F. nucleatum showed a tendency to decrease in the test group, although it was not significant.

10.
Nat Nanotechnol ; 16(5): 563-569, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33633404

RESUMO

Interferometers probe the wave-nature and exchange statistics of indistinguishable particles-for example, electrons in the chiral one-dimensional edge channels of the quantum Hall effect (QHE). Quantum point contacts can split and recombine these channels, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can unveil the exchange statistics of anyonic quasi-particles in the fractional quantum Hall effect (FQHE). Here, we present a fabrication technique for QHIs in van der Waals (vdW) materials and realize a tunable, graphene-based Fabry-Pérot (FP) QHI. The graphite-encapsulated architecture allows observation of FQHE at a magnetic field of 3T and precise partitioning of integer and fractional edge modes. We measure pure Aharonov-Bohm interference in the integer QHE, a major technical challenge in small FP interferometers, and find that edge modes exhibit high-visibility interference due to large velocities. Our results establish vdW heterostructures as a versatile alternative to GaAs-based interferometers for future experiments targeting anyonic quasi-particles.

11.
Biocontrol Sci ; 25(3): 173-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32938847

RESUMO

Viridans group streptococci (VGS) are a common cause of infective endocarditis, and dental plaque is the major source of these bacteria. The present study examined the antibiotic resistance of 635 VGS isolates obtained from dental plaques. Isolates from supragingival plaques were identified using the rapid ID 32 Strep and mini API reader (bioMérieux, France), and minimal inhibitory concentrations (MICs) were determined by a broth microdilution method. High rates of resistance to ampicillin and tetracycline were detected among the isolates. The most resistant species were Streptococcus sanguinis and Streptococcus salivarius. Among the 635 isolates, 9.1% were resistant to erythromycin, and 20.6% to tetracycline. All isolates were sensitive to vancomycin. Resistance to amoxicillin was observed in 0.2% of all isolates. In this study, we showed the incidence of antimicrobial resistance and the susceptibility patterns among 635 VGS isolates from dental plaque.


Assuntos
Antibacterianos/farmacologia , Placa Dentária/microbiologia , Farmacorresistência Bacteriana , Estreptococos Viridans/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estreptococos Viridans/classificação , Estreptococos Viridans/isolamento & purificação
12.
Chem Soc Rev ; 49(18): 6632-6665, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780048

RESUMO

The electrochemical reduction of CO2 stores intermittent renewable energy in valuable raw materials, such as chemicals and transportation fuels, while minimizing carbon emissions and promoting carbon-neutral cycles. Recent technoeconomic reports suggested economically feasible target products of CO2 electroreduction and the relative influence of key performance parameters such as faradaic efficiency (FE), current density, and overpotential in the practical industrial-scale applications. Furthermore, fundamental factors, such as available reaction pathways, shared intermediates, competing hydrogen evolution reaction, scaling relations of the intermediate binding energies, and CO2 mass transport limitations, should be considered in relation to the electrochemical CO2 reduction performance. Intensive research efforts have been devoted to designing and developing advanced electrocatalysts and improving mechanistic understanding. More recently, the research focus was extended to the catalyst environment, because the interfacial region can delicately modulate the catalytic activity and provide effective solutions to challenges that were not fully addressed in the material development studies. Herein, we discuss the importance of catalyst-electrolyte interfaces in improving key operational parameters based on kinetic equations. Furthermore, we extensively review previous studies on controlling organic modulators, electrolyte ions, electrode structures, as well as the three-phase boundary at the catalyst-electrolyte interface. The interfacial region modulates the electrocatalytic properties via electronic modification, intermediate stabilization, proton delivery regulation, catalyst structure modification, reactant concentration control, and mass transport regulation. We discuss the current understanding of the catalyst-electrolyte interface and its effect on the CO2 electroreduction activity.

13.
Biocontrol Sci ; 25(1): 41-44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32173666

RESUMO

Chlorhexidine digluconate inhibits oral bacteria and the formation of dental plaque. Protamine sulfate, a polycationic protein, exerts antibacterial activity by altering the cell wall of bacteria. Extracts of Laminaria japonica and Rosmarinus officinalis display antimicrobial effects against oral pathogens. The purpose of this study was to investigate the synergistic effect of chlorhexidine digluconate and protamine sulfate on the inhibitory activity of L. japonica and R. officinalis extracts against Streptococcus mutans, a major etiological agent for dental caries. Minimal inhibitory concentrations (MICs) of chlorhexidine digluconate, protamine sulfate, and L. japonica and R. officinalis extracts were determined by broth dilution method. Synergistic effect of chlorhexidine digluconate or protamine sulfate and extracts of L. japonica or R. officinalis was determined by fractional inhibitory concentration index (FIC). FIC demonstrated the synergistic effects of the different combinations of antibacterial agents. In this study, the use of sub-MIC of chlorhexidine digluconate or protamine sulfate with sub-MIC of L. japonica and R. officinalis extracts resulted in synergistic inhibitory effects of these antibacterial agents except for chlorhexidine digluconate and L. japonica combination.


Assuntos
Antibacterianos/farmacologia , Clorexidina/análogos & derivados , Laminaria/química , Extratos Vegetais/farmacologia , Protaminas/farmacologia , Rosmarinus/química , Streptococcus mutans/efeitos dos fármacos , Clorexidina/farmacologia , Cárie Dentária/microbiologia , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
14.
Cell Rep ; 30(8): 2686-2698.e8, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101745

RESUMO

Heterochromatin functions as a scaffold for factors responsible for gene silencing and chromosome segregation. Heterochromatin can be assembled by multiple pathways, including RNAi and RNA surveillance. We identified factors that form heterochromatin using dense profiles of transposable element integration in Schizosaccharomyces pombe. The candidates include a large number of essential proteins such as four canonical mRNA cleavage and polyadenylation factors. We find that Iss1, a subunit of the poly(A) polymerase module, plays a role in forming heterochromatin in centromere repeats that is independent of RNAi. Genome-wide maps reveal that Iss1 accumulates at genes regulated by RNA surveillance. Iss1 interacts with RNA surveillance factors Mmi1 and Rrp6, and importantly, Iss1 contributes to RNA elimination that forms heterochromatin at meiosis genes. Our profile of transposable element integration supports the model that a network of mRNA cleavage and polyadenylation factors coordinates RNA surveillance, including the mechanism that forms heterochromatin at meiotic genes.


Assuntos
Elementos de DNA Transponíveis/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Núcleo Celular/metabolismo , Centrômero/metabolismo , Exossomos/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA/genética , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética
15.
J Knee Surg ; 33(1): 73-77, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30577049

RESUMO

Patellar fractures account for approximately 1% of all human body fractures. This study aimed to compare the surgical outcomes of open reduction and closed reduction for patellar fractures. This retrospective study included 62 patients (63 cases) who underwent surgical treatment of patellar fractures from 2008 to 2013. Of the 63 cases, open and closed reductions were performed in 42 and 21 cases, respectively. Plain radiography was used to assess fracture healing. Comminuted patellar fracture was the most common fracture type in both groups. Tension band wiring and cannulated screw fixation were mainly used in the open and closed reduction groups, respectively. There was no significant difference in the modified hospital for special surgery score, visual analog scale score for pain, and range of motion between the two groups. The mean union time was 3.2 and 3.0 months in open and closed reductions, respectively. Postoperative knee stiffness was noted in five cases of open reduction and in three cases of closed reduction. One patient in the open reduction group had a refracture. There were no notable differences in treatment outcomes between open and closed reductions. Thus, closed reduction may not be inferior to open reduction as a surgical treatment for patellar fractures.


Assuntos
Redução Fechada/métodos , Fraturas Ósseas/cirurgia , Fraturas Cominutivas/cirurgia , Redução Aberta/métodos , Patela/cirurgia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Parafusos Ósseos , Fios Ortopédicos , Feminino , Fixação Interna de Fraturas/métodos , Consolidação da Fratura , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/fisiopatologia , Fraturas Cominutivas/diagnóstico por imagem , Fraturas Cominutivas/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Patela/diagnóstico por imagem , Patela/lesões , Patela/fisiopatologia , Amplitude de Movimento Articular , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
16.
Biocontrol Sci ; 24(4): 201-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31875612

RESUMO

Water from the waterlines of dental units is often contaminated with bacteria but there have been few studies accurately assessing the diversity of these bacterial populations. The aim of our study was to assess the bacterial diversity present in water collected from dental unit waterlines using the Illumina MiSeq. Water was collected from two separate dental units located in a dental hospital and two units found in two separate private clinics in Gangneung-si, Korea. From the four water samples that were analyzed, a total of 233 bacterial genera were identified. The most abundant genera were Sphingomonas (25%), Halomonas (20%), Reyranella (8%), and Novosphingobium (6%). Halomonas was more prevalent in the two dental units located at the dental hospital, while Reyranella and Sphingomonas were more commonly found in the private dental clinics. Only 19 of the 233 identified genera were common between water samples from all dental units. Opportunistic pathogens were shown to account for 7.7% of the total bacterial genera identified. Our results have demonstrated that there is a wide assortment of bacterial genera present in dental unit waterlines.


Assuntos
Bactérias/classificação , Equipamentos Odontológicos/microbiologia , Microbiologia da Água , Bactérias/genética , Bactérias/patogenicidade , Carga Bacteriana , Contaminação de Equipamentos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , República da Coreia , Análise de Sequência de DNA
17.
J Am Chem Soc ; 141(11): 4624-4633, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30702874

RESUMO

In this study, we demonstrate that the initial morphology of nanoparticles can be transformed into small fragmented nanoparticles, which were densely contacted to each other, during electrochemical CO2 reduction reaction (CO2RR). Cu-based nanoparticles were directly grown on a carbon support by using cysteamine immobilization agent, and the synthesized nanoparticle catalyst showed increasing activity during initial CO2RR, doubling Faradaic efficiency of C2H4 production from 27% to 57.3%. The increased C2H4 production activity was related to the morphological transformation over reaction time. Twenty nm cubic Cu2O crystalline particles gradually experienced in situ electrochemical fragmentation into 2-4 nm small particles under the negative potential, and the fragmentation was found to be initiated from the surface of the nanocrystal. Compared to Cu@CuO nanoparticle/C or bulk Cu foil, the fragmented Cu-based NP/C catalyst achieved enhanced C2+ production selectivity, accounting 87% of the total CO2RR products, and suppressed H2 production. In-situ X-ray absorption near edge structure studies showed metallic Cu0 state was observed under CO2RR, but the fragmented nanoparticles were more readily reoxidized at open circuit potential inside of the electrolyte, allowing labile Cu states. The unique morphology, small nanoparticles stacked upon on another, is proposed to promote C-C coupling reaction selectivity from CO2RR by suppressing HER.

18.
Foot Ankle Surg ; 25(3): 316-322, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29409176

RESUMO

BACKGROUND: We aimed to compare the clinical and radiographic outcomes of minimally invasive surgery (MIS) and distal chevron metatarsal osteotomy (DCMO) for young female patients with mild-to-moderate juvenile hallux valgus deformity. METHODS: We retrospectively reviewed the radiographs and clinical findings of young female patients with mild-to-moderate juvenile hallux valgus who underwent MIS (25 feet) or DCMO (30 feet). In 12 of 25 MIS feet, 2.0-mm bio-absorbable pins were used as an additional fixation device crossing the osteotomy site, and 1.4-mm Kirschner wires were used in the remaining 13 feet. RESULTS: Radiographic and clinical parameters preoperatively and at the final follow-up were not significantly different between the 2 groups. There were no significant differences in the increments of hallux valgus angle (HVA), distal metatarsal articular angle, medial sesamoid position, first metatarsal length, metatarsal length index, or relative second metatarsal length. Two MIS subgroups according to the additional fixation device showed no significant differences in HVA, the first to second intermetatarsal angle lateral translation ratio, or plantar offset at the final follow-up. CONCLUSIONS: MIS for young female patients with mild-to-moderate juvenile hallux valgus deformity had similar radiographic and clinical outcomes compared to DCMO. Regarding additional fixation crossing the osteotomy site, both temporary Kirschner wires and absorbable pins showed no radiographic differences in terms of correction maintenance. LEVEL OF EVIDENCE: 3.


Assuntos
Hallux Valgus/diagnóstico por imagem , Hallux Valgus/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos , Adolescente , Adulto , Fios Ortopédicos , Estética , Feminino , Humanos , Ossos do Metatarso/diagnóstico por imagem , Ossos do Metatarso/cirurgia , Osteotomia , Satisfação do Paciente , Estudos Retrospectivos
19.
J Gen Appl Microbiol ; 64(6): 269-275, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29848913

RESUMO

Susceptibility testing of bacteria to disinfecting chemical agents isolated from dental unit waterlines (DUWL) is necessary for the development of effective disinfectant products. However, until now, susceptibility tests for chemical agents, which are components of DUWL disinfectant products, have not been conducted on bacteria isolated from DUWL water. The aim of this study was to evaluate and compare the susceptibilities of DUWL isolates in planktonic and biofilm states to cetylpyridinium chloride, as well as to the four chemical agents currently used for DUWL management. A total of 56 isolates, including 12 genera, were identified by 16S rDNA sequencing, and one strain of each genus was selected for susceptibility testing. A total of 12 isolates were used for the susceptibility tests. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for the planktonic state and the minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) for the biofilm state using microtiter plates. MIC, MBC, MBIC, and MBEC of the 12 isolates for ethanol were the highest, followed by sodium hypochlorite, hydrogen peroxide, and chlorhexidine. Similar to chlorhexidine, the lowest MIC, MBC, MBIC, and MBEC were found in cetylpyridinium chloride. The susceptibilities of the isolates for sodium hypochlorite and ethanol were similar in the planktonic and biofilm states. For hydrogen peroxide and chlorhexidine, the MBIC and MIC were similar, but MBEC was 256 times higher than MBC. The MBIC and MBEC of isolates for cetylpyridinium chloride were 128 and 256 times higher than the MIC and MBC, respectively. As far as we know, this was the first study reporting the susceptibility of DUWL isolates to cetylpyridinium chloride and chemical agents used for disinfecting DUWLs. Cetylpyridinium chloride, for which the DUWL isolates showed the highest susceptibility, could be used for disinfecting DUWLs.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Equipamentos Odontológicos/microbiologia , Desinfetantes/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Genoma Viral/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Anaerobe ; 55: 107-111, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30423437

RESUMO

It has been reported that sub-minimal inhibitory concentrations (sub-MICs) of antibiotics are capable of altering bacterial surface properties and phenotype. In this study, the effects of sub-MICs of certain antibiotics on surface hydrophobicity, cell morphology, and protein profile were ascertained using Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticola strains, which are pathogenic bacterial species in periodontal diseases. The MICs of antibiotics were determined by culturing bacteria in media supplemented with serially diluted antibiotic solutions, and sub-MIC of antibiotics was used. The effect of sub-MIC of antibiotics on cell morphology was determined by scanning electron microscopy. Microscopic observation of F. nucleatum and P. gingivalis grown at a sub-MIC of amoxicillin revealed cell enlargement. T. denticola grown at a sub-MIC of doxycycline also showed cell elongation. The relative surface hydrophobicity determined by measuring the ability of the bacteria to absorb n-hexadecane revealed an increase in surface hydrophobicity of F. nucleatum grown at sub-MIC of penicillin and amoxicillin, but a decrease with metronidazole; whereas increased hydrophobicity was observed in T. denticola grown at sub-MIC of doxycycline, metronidazole and tetracycline. The surface hydrophobicity of P. gingivalis increased only when grown in sub-MIC of metronidazole. The protein expression profile of the treated bacteria differed from their respective controls. These results confirmed that sub-MIC concentrations of antibiotics can affect the phenotype, surface properties and morphology of periodontal pathogenic anaerobic bacteria.


Assuntos
Antibacterianos/farmacologia , Fusobacterium nucleatum/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Treponema denticola/efeitos dos fármacos , Bactérias Anaeróbias/química , Bactérias Anaeróbias/efeitos dos fármacos , Bactérias Anaeróbias/ultraestrutura , Fusobacterium nucleatum/química , Fusobacterium nucleatum/ultraestrutura , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Porphyromonas gingivalis/química , Porphyromonas gingivalis/ultraestrutura , Proteoma/análise , Treponema denticola/química , Treponema denticola/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...