Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 1031-1038, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559726

RESUMO

With the advancement of semiconductor manufacturing technology, the effects of trace impurities in industrial chemicals have grown significantly. In industrial processes, conventional purification methods, such as filtration and distillation, have reached their limits for removing nanoparticles from aqueous and acidic solutions. Especially, silicon and silicate are two fundamental byproducts in semiconductor fabrication processes. Assembly and subsequent removal of these materials at the nanoparticle level have been confronted with significant challenges. Therefore, it is imperative to develop technologies to effectively control and remove these impurities for next-generation manufacturing processes. In this study, we explored the use of electric field-assisted assembly to agglomerate silicate and silicon nanoparticles in industry-standard aqueous and acidic solutions. By applying an alternating current electric field, we induced dipole moments in the nanoparticles, which led to their agglomeration. Notably, nanoparticles smaller than 4 nm grew into significantly larger ones, with submicroparticle sizes exceeding 87 nm for silicate and reaching 130 nm for silicon. Through systematic analysis of the size distribution changes, we identified optimal agglomeration times of 10 min for silicate and 20 min for silicon, revealing effective agglomeration within the frequency range of 1-1000 kHz. The agglomerated particles were stable for 5 days. Our electric field-assisted approach to obtain assembled nanoparticles that can be subsequently removed by conventional purification processes holds promise for enhancing future microfabrication processes, such as semiconductor manufacturing, potentially improving the manufacturing yield and uniformity by reducing the number of trace particles that can act as defective sites.

2.
RSC Adv ; 13(3): 2168-2180, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688067

RESUMO

For producing a drop-in bio jet fuel, one-step hydrotreatment, which includes deoxygenation, isomerization and cracking in one step, is essential to overcome the typical biofuel drawbacks due to high oxygen content, out of jet fuel range hydrocarbons, and low isomerization degree. Herein, Co- or/and Mo-supported Beta(25) zeolites with various Co/Mo ratios were prepared as transition metal-supported zeolite catalysts without the need for sulfidation of conventional transition metal catalysts. Based on the catalyst characterization, the Co/Mo ratio alters the metal phase with the appearance of CoMoO4 and the altered Co metal phase strongly influences the acidic properties of Beta(25) by the formation of Lewis (L) acid sites with different strengths as Co3O4 and CoMoO4 for strong and weak L acid sites, respectively. The catalytic activities were investigated for hydrotreatment of methyl palmitate as a biofuel model compound of fatty acid methyl esters. Primarily, Co is required for deoxygenation and Mo suppresses overcracking to enhance the yield of jet fuel range hydrocarbons. The Co/Mo ratio plays an important role to improve the C8-C16 selectivity by modifying the acidic properties to inhibit excessive cracking. Co5Mo10/Beta(25) achieved the best catalytic performance with the conversion of 94.2%, C8-C16 selectivity of 89.7 wt%, and high isomer ratio of 83.8% in organic liquid product. This unique modification of acidic properties will find use in the design of optimal transition metal-supported zeolite catalysts for selective one-step hydrotreatment to produce bio jet fuel range hydrocarbons.

3.
Motor Control ; 27(1): 35-53, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252947

RESUMO

Gravity provides critical information for the adjustment of body movement or manipulation of the handheld object. Indeed, the changes in gravity modify the mechanical constraints of prehensile actions, which may be accompanied by the changes in control strategies. The current study examined the effect of the gravitational force of a handheld object on the control strategies for subactions of multidigit prehension. A total of eight subjects performed prehensile tasks while grasping and lifting the handle by about 250 mm along the vertical direction. The experiment consisted of two conditions: lifting gravity-induced (1g) and weightless (0g) handheld objects. The weightless object condition was implemented utilizing a robot arm that produced a constant antigravitational force of the handle. The current analysis was limited to the two-dimensional grasping plane, and the notion of the virtual finger was employed to formulate the cause-effect chain of elemental variables during the prehensile action. The results of correlation analyses confirmed that decoupled organization of two subsets of mechanical variables was observed in both 1g and 0g conditions. While lifting the handle, the two subsets of variables were assumed to contribute to the grasping and rotational equilibrium, respectively. Notably, the normal forces of the thumb and virtual finger had strong positive correlations. In contrast, the normal forces had no significant relationship with the variables as to the moment of force. We conclude that the gravitational force had no detrimental effect on adjustments of the mechanical variables for the rotational action and its decoupling from the grasping equilibrium.


Assuntos
Força da Mão , Desempenho Psicomotor , Humanos , Rotação , Dedos , Movimento
4.
J Nanosci Nanotechnol ; 20(9): 5783-5786, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331180

RESUMO

SSZ-13 zeolite was modified by two kinds of post-treatment methods such as steaming and SiO2 surface passivation (silylation) for ETP catalyst with high activity. The former steaming treatment was conducted in the range of 400-700 °C, whereas the latter surfaces passivation was applied to a chemical liquid deposition (CLD) technique that uses various silylation agents such as tetramethylorthosilicate (TMOS), tetraethylorthosilicate (TEOS), and tetrabuthylorthosilicate (TBOS). Catalysts were characterized by powder-XRD, ICP, Ar-phsisorption, solid-state 27Al MAS NMR, and NH3-TPD, and their activities were tested in fixed bed reaction system. Regarding the effects of steaming temperature, the results show that a relatively higher selectivity is observed in SSZ-13 catalysts treated at proper steaming temperatures such as 450 and 500 °C compared to parent and other steam treated catalysts. For optimum surface passivation treatments for ETP reactions, one-step surface passivation using TEOS agents among various passivation agents led to enhanced propylene selectivity to 80% when compared with parent and other silylated SSZ-13 catalysts. However, a sequential passivation treatment with a TEOS agent was not highly affected by the reaction activity.

5.
J Nanosci Nanotechnol ; 20(7): 4525-4528, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968512

RESUMO

Among higher alcohol synthesis (HAS) catalysts, Rh-based catalysts show catalytic activity for the selective production of ethanol and C2+ oxygenates, because both CO dissociation and CO insertion are available on the surface of Rh. Theoretical studies have indicated that the activation barrier of CO on the Rh(100) surface is lower than other Rh surfaces, and this can lead to higher catalytic activity for HAS on Rh-based catalysts. Uniform and specifically size-controlled Rh nanocubes (NCs) with Rh(100) planes were prepared via a polyol synthesis route, and introduced onto ordered mesoporous carbon (OMC) supports. The Rh NC/OMC materials were employed for HAS from syngas to investigate the effect of the Rh crystal surface. TEM analysis and catalytic reactions clearly demonstrated that Rh NCs in the OMC support can improve the catalytic performance for HAS by both enhancing CO dissociation and suppressing methane formation. Moreover, additional chain growth reactions for the synthesis of C3 and C4 alcohols were induced by the Rh NCs on OMC supports.

6.
Angew Chem Int Ed Engl ; 54(43): 12805-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26302889

RESUMO

A microporous crystalline silica zeolite of the MEL structure type and three other zeolite analogues composed of germanosilicate frameworks were synthesized using tributylsulfonium, triphenylsulfonium, or tri(para-tolyl)sulfonium as the structure-directing agent. The germanosilicates thus obtained had ISV, ITT, or a new zeolite structure depending on the synthesis conditions. The structure of the new germanosilicate was solved using X-ray powder diffraction data with the aid of a charge-flipping method. The solution indicated a crystal structure belonging to the P63/mmc space group with cell parameters of a=16.2003 Šand c=21.8579 Å. After calcination, the new germanosilicate material exhibited two types of accessible micropores with diameters of 0.61 and 0.78 nm.

7.
J Am Chem Soc ; 135(24): 8806-9, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23731379

RESUMO

Multiamines with amphiphilic structures have been synthesized to serve as simultaneous structure-directing agents in micro- and meso-structural levels for aluminophosphate materials (AlPOs) and their analogues, such as silicoaluminophosphate, cobalt aluminophosphate, and gallium phosphate. The amine molecules are assembled into a micelle with a specific morphology to function as a meso-level structure director. Individual amine groups in the micelle are able to direct the formation of microporous crystalline AlPO structure. The resultant meso-level morphologies of the AlPOs are typically nanosheets of uniform thickness, which can be tailored in the range of 2-5 nm by the number of amine groups. Sponge-like disordered mesoporous morphologies can be generated, depending on the amine structures. Using such multiamines provides a versatile route to various phosphate materials with a structural hierarchy for enhanced porous functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...