Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Rep ; 14(1): 5657, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454018

RESUMO

Cerium oxide nanoparticles (CeO2 NPs, NM-212) are well-known for their catalytic properties and antioxidant potential, and have many applications in various industries, drug delivery, and cosmetic formulations. CeO2 NPs exhibit strong antimicrobial activity and can be used to efficiently remove pathogens from different environments. However, knowledge of the toxicological evaluation of CeO2 NPs is too limited to support their safe use. In this study, CeO2 NPs were orally administered to Sprague Dawley rats for 13 weeks at the doses of 0, 10, 100, and 1000 mg/kg bw/day, followed by a four week recovery period. The hematology values for the absolute and relative reticulocyte counts in male rats treated with 1000 mg/kg bw/day CeO2 NPs were lower than those in control rats. The clinical chemistry values for sodium and chloride in the treated male rat groups (100 and 1000 mg/kg/day) and total protein and calcium in the treated female rat groups (100 mg/kg/day) were higher than those in the control groups. However, these changes were not consistent in both sexes, and no abnormalities were found in the corresponding pathological findings. The results showed no adverse effects on any of the parameters assessed. CeO2 NPs accumulated in the jejunum, colon, and stomach wall of rats administered 1000 mg/kg CeO2 NPs for 90 days. However, these changes were not abnormal in the corresponding histopathological and immunohistochemical examinations. Therefore, 1000 mg/kg bw/day may be considered the "no observed adverse effect level" of CeO2 NPs (NM-212) in male and female SD rats under the present experimental conditions.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Nanopartículas/química , Cério/toxicidade , Cério/química , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
2.
Nano Lett ; 24(3): 805-813, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38213286

RESUMO

Over the past few decades, the increased application of nanomaterials has raised questions regarding their safety and possible toxic effects. Organoids have been suggested as promising tools, offering efficient assays for nanomaterial-induced toxicity evaluation. However, organoid systems have some limitations, such as size heterogeneity and poor penetration of nanoparticles because of the extracellular matrix, which is necessary for organoid culture. Here, we developed a novel system for the improved safety assessment of nanomaterials by establishing a 3D floating organoid paradigm. In addition to overcoming the limitations of two-dimensional systems including the lack of in vitro-in vivo cross-talk, our method provides multiple benefits as compared with conventional organoid systems that rely on an extracellular matrix for culture. Organoids cultured using our method exhibited relatively uniform sizing and structural integrity and were more conducive to the internalization of nanoparticles. Our floating culture system will accelerate the research and development of safe nanomaterials.


Assuntos
Nanoestruturas , Organoides , Matriz Extracelular
3.
Bioact Mater ; 34: 401-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282966

RESUMO

In vitro vascularized cancer models utilizing microfluidics have emerged as a promising tool for mechanism study and drug screening. However, the lack of consideration and preparation methods for cancer cellular sources that are capable of adequately replicating the metastatic features of circulating tumor cells contributed to low relevancy with in vivo experimental results. Here, we show that the properties of cancer cellular sources have a considerable impact on the validity of the in vitro metastasis model. Notably, with a hydrophobic surface, we can create highly metastatic spheroids equipped with aggressive invasion, endothelium adhesion capabilities, and activated metabolic features. Combining these metastatic spheroids with the well-constructed microfluidic-based extravasation model, we validate that these metastatic spheroids exhibited a distinct extravasation response to epidermal growth factor (EGF) and normal human lung fibroblasts compared to the 2D cultured cancer cells, which is consistent with the previously reported results of in vivo experiments. Furthermore, the applicability of the developed model as a therapeutic screening platform for cancer extravasation is validated through profiling and inhibition of cytokines. We believe this model incorporating hydrophobic surface-cultured 3D cancer cells provides reliable experimental data in a clear and concise manner, bridging the gap between the conventional in vitro models and in vivo experiments.

4.
Analyst ; 149(3): 846-858, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167886

RESUMO

Lipid alterations in the brain are well-documented in disease and aging, but our understanding of their pathogenic implications remains incomplete. Recent technological advances in assessing lipid profiles have enabled us to intricately examine the spatiotemporal variations in lipid compositions within the complex brain characterized by diverse cell types and intricate neural networks. In this study, we coupled time-of-flight secondary ion mass spectrometry (ToF-SIMS) to an amyotrophic lateral sclerosis (ALS) Drosophila model, for the first time, to elucidate changes in the lipid landscape and investigate their potential role in the disease process, serving as a methodological and analytical complement to our prior approach that utilized matrix-assisted laser desorption/ionization mass spectrometry. The expansion of G4C2 repeats in the C9orf72 gene is the most prevalent genetic factor in ALS. Our findings indicate that expressing these repeats in fly brains elevates the levels of fatty acids, diacylglycerols, and ceramides during the early stages (day 5) of disease progression, preceding motor dysfunction. Using RNAi-based genetic screening targeting lipid regulators, we found that reducing fatty acid transport protein 1 (FATP1) and Acyl-CoA-binding protein (ACBP) alleviates the retinal degeneration caused by G4C2 repeat expression and also markedly restores the G4C2-dependent alterations in lipid profiles. Significantly, the expression of FATP1 and ACBP is upregulated in G4C2-expressing flies, suggesting their contribution to lipid dysregulation. Collectively, our novel use of ToF-SIMS with the ALS Drosophila model, alongside methodological and analytical improvements, successfully identifies crucial lipids and related genetic factors in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Drosophila , Espectrometria de Massa de Íon Secundário , Lipídeos
5.
Adv Healthc Mater ; 13(11): e2303713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216129

RESUMO

ViSiON (visualization materials composed of silicon-based optical nanodisks) is presented, which offers a unique optical combination of near-infrared (NIR) optical properties and biodegradability. Initially, numerical simulations are conducted to calculate the total extinction and scattering effects of ViSiON by the diameter-to-thickness ratio, predicting precise control over its scattering properties in the NIR region. A top-down patterning technique is employed to synthesize ViSiON with accurate diameter and thickness control. ViSiON with a 50 nm thickness exhibits scattering properties over 400 times higher than that of 30 nm, rendering it suitable as a contrast agent for optical coherence tomography (OCT), especially in ophthalmic applications. Furthermore, ViSiON possesses inherent biodegradability in media, with ≈95% degradation occurring after 48 h, and the degradation rate can be finely tuned based on the quantity of protein coating applied to the surface. Subsequently, the OCT imaging capability is validated even within vessels smaller than 300 µm, simulating retinal vasculature using a retinal phantom. Then, using an ex ovo chick embryo model, it is demonstrated that ViSiON enhances the strength of protein membranes by 6.17 times, thereby presenting the potential for ViSiON as an OCT imaging probe capable of diagnosing retinal diseases.


Assuntos
Silício , Tomografia de Coerência Óptica , Silício/química , Animais , Tomografia de Coerência Óptica/métodos , Embrião de Galinha , Oftalmologia/métodos , Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Retina/diagnóstico por imagem , Meios de Contraste/química , Nanoestruturas/química
6.
ACS Appl Mater Interfaces ; 15(48): 55975-55983, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37994824

RESUMO

The need exists for biosensing technologies capable of sensitively and accurately detecting various biomarkers. In response, the development of nanozymes is actively underway; they have advantages in stability, cost, performance, and functionalization over natural enzymes commonly used for signal amplification in sensing technologies. However, the performance of nanozymes is interdependent with factors such as shape, size, and surface functional moiety, making it challenging to perform quantitative performance comparisons based on the nanozyme material. In this study, we propose a physical synthetic approach to fabricate double-layered bimetallic nanozymes with identical shapes, sizes, and surfaces but different material compositions. These Janus nanozymes consist of a nanozymatic layer responsible for catalytic activity and a gold layer responsible for quantification and efficient surface modification. Based on their identical physicochemical properties, the synthesized double-layered bimetallic nanozymes allow, for the first time, a quantitative comparison of nanozymatic activities in terms of various kinetic parameters. We compared several candidates and found that the Ir-Au nanozyme exhibited the best performance. Subsequently, we applied this nanozyme to detect neutralizing antibodies against SARS-CoV-2 based on a surrogate virus neutralization test. The results demonstrated a limit of detection as low as 2 pg/mL and selectivity specifically toward MERS-CoV. The performance of this assay was further validated using vaccinated samples, demonstrating the potential of our approach as a cost-effective, rapid, and sensitive diagnostic tool for neutralizing antibody detection against viruses such as SARS-CoV-2.


Assuntos
Bioensaio , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Ouro , Cinética , SARS-CoV-2
7.
Biomater Res ; 27(1): 103, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848974

RESUMO

BACKGROUND: Fibrosis plays an important role in both normal physiological and pathological phenomena as fibroblasts differentiate to myofibroblasts. The activation of fibroblasts is determined through interactions with the surrounding extracellular matrix (ECM). However, how this fibroblast-to-myofibroblast transition (FMT) is regulated and affected by elastin concentration in a three-dimensional (3D) microenvironment has not been investigated. METHODS: We developed an insoluble elastin-gradient 3D hydrogel system for long-lasting cell culture and studied the molecular mechanisms of the FMT in embedded cells by nanoflow LC-MS/MS analysis along with validation through real-time PCR and immunofluorescence staining. RESULTS: By optimizing pH and temperature, four 3D hydrogels containing fibroblasts were successfully fabricated having elastin concentrations of 0, 20, 50, and 80% in collagen. At the low elastin level (20%), fibroblast proliferation was significantly increased compared to others, and in particular, the FMT was clearly observed in this condition. Moreover, through mass spectrometry of the hydrogel environment, it was confirmed that differentiation proceeded in two stages. In the early stage, calcium-dependent proteins including calmodulin and S100A4 were highly associated. On the other hand, in the late stage after several passages of cells, distinct markers of myofibroblasts were presented such as morphological changes, increased production of ECM, and increased α-SMA expression. We also demonstrated that the low level of elastin concentration induced some cancer-associated fibroblast (CAF) markers, including PDGFR-ß, and fibrosis-related disease markers, including THY-1. CONCLUSION: Using our developed 3D elastin-gradient hydrogel system, we evaluated the effect of different elastin concentrations on the FMT. The FMT was induced even at a low concentration of elastin with increasing CAF level via calcium signaling. With this system, we were able to analyze varying protein expressions in the overall FMT process over several cellular passages. Our results suggest that the elastin-gradient system employing nonlinear optics imaging provides a good platform to study activated fibroblasts interacting with the microenvironment, where the ECM plays a pivotal role.

8.
Analyst ; 148(21): 5355-5360, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37750298

RESUMO

This study demonstrated the potential of 50 nm PEGylated Si NPs for high-resolution in vivo29Si MR imaging, emphasizing their biocompatibility and water dispersibility. The acquisition of in vivo Si MR images using the lowest reported dose after subcutaneous and intraperitoneal administration opens new avenues for future 29Si MR studies.

9.
Appl Opt ; 62(18): 4805-4812, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37707255

RESUMO

We present an integrating hemisphere-based (i.e., a variant of integrating spheres) implementation of the indirect illumination method for absolute photoluminescence quantum yield measurements, which is a recommended method in the international standard IEC 62607-3-1:2014. We rigorously formulated a mathematical model and a measurement procedure for the absolute photoluminescence quantum yield measurement in the integrating hemisphere-based system. The measurement system was calibrated using an Hg-Ar discharge lamp and spectral irradiance standard lamps for wavelength and relative spectral radiant flux scales, respectively. Furthermore, we identified and evaluated uncertainty components involved in the photoluminescence quantum yield (PLQY) measurement. To validate our measurement system, we applied it to the two de facto standard dyes: quinine bisulfate (QBS) and fluorescein (FLS). Consequently, their PLQY values were determined to be 0.563±0.024 (k=2) and 0.876±0.032 (k=2) for, respectively, QBS and FLS, which are consistent with previous reports.

10.
Biointerphases ; 18(3)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255379

RESUMO

In the study of degenerative brain diseases, changes in lipids, the main component of neurons, are particularly important because they are used as indicators of pathological changes. One method for the sensitive measurement of biomolecules, especially lipids, is time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed argon cluster ions. In this study, biomolecules including various lipids present in normal mouse brain tissue were measured using ToF-SIMS equipped with pulsed argon cluster primary ions. Based on the ToF-SIMS measurement results, hybrid SIMS (OrbiSIMS), which is a ToF-SIMS system with the addition of an orbitrap mass analyzer, was used to directly identify the biomolecules by the region in the real tissue samples. For this, the results of ToF-SIMS, which measured the tissue samples from a single mouse brain within static limits, were compared with those from OrbiSIMS measured beyond the static limits in terms of the differences in molecular profiling. From this analysis, two types of positive and negative ions were selected for identification, with the OrbiSIMS MS/MS results indicating that the positive ions were glycerophosphocholine and the negative ions were glycerophosphoinositol and sulfatide, a sphingolipid. Then, to confirm the identification of the molecular candidates, lipids were extracted from mirror image tissue samples, and LC-MS/MS also using an orbitrap mass analyzer was performed. As a result, the direct identification of molecular candidate groups distributed in particular regions of the tissue samples via OrbiSIMS was found to be consistent with the identification results by LC-MS/MS for extracted samples.


Assuntos
Espectrometria de Massa de Íon Secundário , Espectrometria de Massas em Tandem , Camundongos , Animais , Espectrometria de Massa de Íon Secundário/métodos , Espectrometria de Massas em Tandem/métodos , Argônio/química , Cromatografia Líquida , Sulfoglicoesfingolipídeos , Íons/química , Encéfalo
11.
Metabolites ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36837796

RESUMO

Autism is a neurodevelopmental disorder for which the cause and treatment have yet not been determined. The polyunsaturated fatty acid (PUFA) levels change rapidly in the blood or cerebrospinal fluid of autistic children and PUFAs are closely related to autism spectrum disorder (ASD). This finding suggests that changes in lipid metabolism are associated with ASD and result in an altered distribution of phospholipids in cell membranes. To further understand ASD, it is necessary to analyze phospholipids in organs consisting of nerve cells, such as the brain. In this study, we investigated the phospholipid distribution in the brain tissue of valproic acid-induced autistic mice using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Phospholipids including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were identified in each brain region and exhibited differences between the ASD and control groups. These phospholipids contain docosahexaenoic acid and arachidonic acid, which are important PUFAs for cell signaling and brain growth. We expect that the differences in phospholipids identified in the brain tissue of the ASD model with MALDI-MSI, in conjunction with conventional biological fluid analysis, will help to better understand changes in lipid metabolism in ASD.

12.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678052

RESUMO

TiO2 is the most commonly used photocatalyst in water treatment. The particle size of TiO2 is an important factor that significantly influences its activity during photocatalytic degradation. In the presence of liquid, the properties of nanopowders composed of exactly the same product clearly differ according to their aggregation size. In this study, TiO2 nanoparticles with a controlled size were fabricated by focused ultrasound dispersion. The high energy generated by this system was used to control the size of TiO2 particles in the suspension. The constant high energy released by cavitation enabled the dispersion of the particles without a surfactant. The activities of the prepared TiO2 photocatalysts for methylene blue (MB) degradation were then compared. The dye degradation effect of the photocatalyst was as high as 61.7% after 10 min when the size of the powder was controlled in the solution, but it was only as high as 41.0% when the aggregation size was not controlled. Furthermore, when the TiO2 concentration exceeded a certain level, the photocatalytic activity of TiO2 decreased. Controlling the size of the aggregated photocatalyst particles is, therefore, essential in water-treatment technologies utilizing TiO2 photocatalytic properties, and adjusting the TiO2 concentration is an important economic factor in this photocatalytic technology. This study contributes to the development of processes for degrading dyes, such as MB, released from wastewater into aquatic environments.

13.
Neurobiol Aging ; 121: 157-165, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442417

RESUMO

Retinal pigment epithelium (RPE) damage is a major factor in age-related macular degeneration (AMD). The RPE in AMD shows mitochondrial dysfunction suggesting an association of AMD with mitochondrial function. Therefore, exogenous mitochondrial transplantation for restoring and replacing dysfunctional mitochondria may be an effective therapeutic strategy for AMD. Here, we investigated the effects of extrinsic mitochondrial transplantation on senescence-induced ARPE-19 cells. We demonstrated mitochondrial dysfunction in replicative senescence-induced ARPE-19 cells after repeated passage. Imbalanced mitophagy and mitochondrial dynamics resulted in increased mitochondrial numbers and elevated levels of mitochondrial and intracellular reactive oxygen species. Exogenous mitochondrial transplantation improved mitochondrial dysfunction and alleviated cellular senescence hallmarks, such as increased cell size, increased senescence-associated ß-galactosidase activity, augmented NF-κB activity, increased inflammatory cytokines, and upregulated the cyclin-dependent kinase inhibitors p21 and p16. Further, cellular senescence properties were improved by exogenous mitochondrial transplantation in oxidative stress-induced senescent ARPE-19 cells. These results indicate that exogenous mitochondrial transplantation modulates cellular senescence and may be considered a novel therapeutic strategy for AMD.


Assuntos
Senescência Celular , Degeneração Macular , Humanos , Senescência Celular/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/terapia , Mitocôndrias/metabolismo , Estresse Oxidativo
14.
Toxicol Lett ; 373: 196-209, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464203

RESUMO

Cerium dioxide nanoparticles (CeONPs) have been extensively applied in research for future energy development due to two common oxidation states on their surface. Considering that shape (aspect ratio) is a key determinant of NPs-induced toxicity, we compared the toxicity of hexagonal (H)- and rod-shaped (R)-CeONPs in mice. At 24 h after pharyngeal aspiration, both types of CeONPs recruited surrounding immune cells (monocytes and neutrophils) into the lung, and R-CeONPs induced a more severe pulmonary inflammatory response compared with H-CeONPs. To identify an indicator to predict pulmonary inflammatory responses at the cellular level, we also investigated their responses in alveolar macrophage cells. At 24 h after treatment, both types of CeONPs were mainly located within the vacuoles (partially, in the lysosome) in the cytoplasm. Mitochondrial damage, intracellular calcium accumulation, and increased NO production were observed in cells exposed to both types of CeONPs, ultimately resulting in a decrease in cell viability. More interestingly, both types of CeONPs formed multinucleated giant cells. Meanwhile, contrary to when suspended in deionized water, R-CeONPs were strongly aggregated with a negative charge in cell culture media, whereas H-CeONPs were relatively well-dispersed with a positive charge. R-CeONPs-induced lysosomal extension was also recovered by premix with negatively charged DNA, and even NPs suspended in cell culture media without cells were detected under the FACS system, suggesting interference by protein corona. Therefore, we suggest that shape (aspect ratio) is an important factor determining inhaled NPs-induced pathology and that the effect of the surface charge and protein corona should be carefully considered in interpreting results derived from in vitro tests. Furthermore, we propose that the relationship between the formation of multinucleated giant cells and the inflammatory response of inhaled CeONPs should be further studied.


Assuntos
Cério , Nanopartículas , Coroa de Proteína , Camundongos , Animais , Coroa de Proteína/metabolismo , Cério/toxicidade , Nanopartículas/toxicidade , Macrófagos Alveolares/metabolismo
15.
Medicine (Baltimore) ; 101(45): e31431, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36397407

RESUMO

This study aimed to investigate the long-term clinical efficacy of and satisfaction with integrative Korean medicine (KM) treatment in patients with shoulder osteoarthritis (SOA). We conducted a prospective observational study of patients with SOA. Patients aged 19 years and older who underwent inpatient treatment for more than 1 week were eligible for enrollment in the study. The primary evaluation index was the numeric rating scale for shoulder pain. Sub-evaluation indices included the Shoulder Pain and Disability Index for shoulder function, EuroQol-5-dimension score for overall quality of life, and Patient Global Impression of Change. Outcome measures were assessed at admission, discharge, and follow-up. For the follow-up questionnaire survey, the following information was collected: current status, surgery after discharge, reasons for finding integrative KM treatment satisfactory/unsatisfactory, and quality of life after discharge. In total, 186 patients were enrolled in the primary analysis, and 103 patients completed the follow-up survey. The mean number of days of follow-up was 1019 ±â€…439. Compared with the baseline, the mean differences in the numeric rating scale and Shoulder Pain and Disability Index were 3.05 ±â€…0.34 and 36.06 ±â€…5.53, respectively. Regarding the Patient Global Impression of Change, 89 out of 103 (86.4%) patients chose "minimally improved" or better. Furthermore, the EuroQol-5-dimension score also increased, showing an improvement of health-related quality of life after treatment. Integrative KM treatment is a potential option for reducing pain severity and improving function and health-related quality of life in patients with SOA. Prospective randomized studies would support this finding for the next step.


Assuntos
Pacientes Internados , Osteoartrite , Humanos , Seguimentos , Qualidade de Vida , Estudos Prospectivos , Dor de Ombro/terapia , Ombro , Osteoartrite/terapia , República da Coreia
16.
ACS Sens ; 7(12): 3940-3946, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36399393

RESUMO

African swine fever virus (ASFV) causes a highly contagious and fatal disease affecting both domesticated and wild pigs. Substandard therapies and inadequate vaccinations cause severe economic damages from pig culling and removal of infected carcasses. Therefore, there is an urgent need to develop a rapid point-of-use approach that assists in avoiding the spread of ASFV and reducing economic loss. In this study, we developed a colorimetric sensing platform based on dual enzymatic amplification that combined the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) system and the enzyme urease for accurate and sensitive detection of ASFV. The mechanism of the sensing platform involves a magnetic bead-anchored urease-conjugated single-stranded oligodeoxynucleotide (MB@urODN), which in the presence of ASFV dsDNA is cleaved by activated CRISPR/Cas12a. After magnetically separating the free urease, the presence of virus can be confirmed by measuring the colorimetric change in the solution. The advantage of this method is that it can detect the presence of virus without undergoing a complex target gene duplication process. The established method detected ASFV from three clinical specimens collected from porcine clinical tissue samples. The proposed platform is designed to provide an adequate, simple, robust, highly sensitive and selective analytical technique for rapid zoonotic disease diagnosis while eliminating the need for vast or specialized tools.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Técnicas Biossensoriais , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Febre Suína Africana/genética , Sistemas CRISPR-Cas/genética , Colorimetria , Urease
17.
ACS Sens ; 7(11): 3409-3415, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36279317

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that play an important role in regulating gene expression. Since miRNAs are abnormally expressed in various cancers, they are considered to be promising biomarkers for early cancer diagnosis. However, the short length and strong sequence similarity among miRNAs make their reliable quantification very challenging. We developed a highly selective amplification-free miRNA detection method based on Förster resonance energy transfer (FRET)-aided single-molecule counting. miRNAs were selectively labeled with FRET probes using splinted ligation. When imaged with a single-molecule FRET setup, the miRNA molecules were accurately identified by the probe's FRET. miRNA concentrations were estimated from the count of molecules. The high sensitivity of the method in finding sparse molecules enabled us to achieve a limit of detection of 31-56 amol for miR-125b, miR-100, and miR-99a. Single nucleotide mismatch could be discriminated with a very high target-to-mismatch ratio. The method accurately measured the high expression of miR-125b in gastric cancer cells, which agreed well with previous reports. The high sensitivity and accuracy of this technique demonstrated its clinical potential as a robust miRNA detection method.


Assuntos
Transferência Ressonante de Energia de Fluorescência , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Materials (Basel) ; 15(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36143772

RESUMO

Emulsions have a range of applications, for example, in cosmetics, pharmaceuticals, and food. However, the surfactants used to prepare such emulsions can often be toxic to humans and the environment and also affect the oil properties of emulsions. Therefore, interest in surfactant-free emulsions has increased in recent years. One method to enhance emulsion stability without a surfactant is to use a gelling agent to increase the viscosity. Gelling agents are viscous hydrocolloids that gel when dispersed in water, even at low concentrations. In this study, we prepared six oil-in-water emulsions (oil content 20%) with different gelling agents (xanthan gum, Carbopol 981, TR-2, and Ultrez 20) and investigated the effect of the gelling agent concentration. For each sample, particle size and emulsion stability analysis were performed at high temperatures to ensure the stability of the emulsions. We observed that the emulsion prepared using TR-2 (0.25 wt%) did not aggregate at high temperatures for one month. Based on our assessment of the stability of these emulsions under various conditions, we believe that the use of gelling agents for the preparation of surfactant-free emulsions shows great promise for applications requiring long-term stable emulsions, such as cosmetics and medicine.

19.
ACS Appl Mater Interfaces ; 14(34): 38459-38470, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35951983

RESUMO

To prevent the ongoing spread of the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accurate and early detection based on a rapid, ultrasensitive, and highly reliable sensing method is crucially important. Here, we present a bumpy core-shell surface-enhanced Raman spectroscopy (SERS) nanoprobe-based sensing platform with single-nanoparticle (SNP)-based digital SERS analysis. The tailorable bumpy core-shell SERS nanoprobe with an internal self-assembled monolayer of 4-nitrobenzenethiol Raman reporters, synthesized using HEPES biological buffer, generates a strong, uniform, and reproducible SERS signal with an SNP-level sensitive and narrowly distributed enhancement factor (2.1 × 108 to 2.2 × 109). We also propose an SNP-based digital SERS analysis method that provides direct visualization of SNP detection at ultralow concentrations and reliable quantification over a wide range of concentrations. The bumpy core-shell SERS nanoprobe-based sensing platform with SNP-based digital SERS analysis achieves the ultrasensitive and quantitative detection of the SARS-CoV-2 spike protein with a limit of detection of 7.1 × 10-16 M over a wide dynamic range from 3.7 × 10-15 to 3.7 × 10-8 M, far outperforming the conventional enzyme-linked immunosorbent assay method for the target protein. Furthermore, it can detect mutated spike proteins from the SARS-CoV-2 variants, representing the key mutations of Alpha, Beta, Gamma, Delta, and Omicron variants. Therefore, this sensing platform can be effectively and efficiently used for the accurate and early detection of SARS-CoV-2 and be adapted for the ultrasensitive and reliable detection of other highly infectious diseases.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/diagnóstico , Humanos , Nanopartículas Metálicas/química , SARS-CoV-2/genética , Análise Espectral Raman/métodos , Glicoproteína da Espícula de Coronavírus
20.
Anal Chem ; 94(26): 9297-9305, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35696262

RESUMO

The importance of multi-omic-based approaches to better understand diverse pathological mechanisms including neurodegenerative diseases has emerged. Spatial information can be of great help in understanding how biomolecules interact pathologically and in elucidating target biomarkers for developing therapeutics. While various analytical methods have been attempted for imaging-based biomolecule analysis, a multi-omic approach to imaging remains challenging due to the different characteristics of biomolecules. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool due to its sensitivity, chemical specificity, and high spatial resolution in visualizing chemical information in cells and tissues. In this paper, we suggest a new strategy to simultaneously obtain the spatial information of various kinds of biomolecules that includes both labeled and label-free approaches using ToF-SIMS. The enzyme-assisted labeling strategy for the targets of interest enables the sensitive and specific imaging of large molecules such as peptides, proteins, and mRNA, a task that has been, to date, difficult for any MS analysis. Together with the strength of the analytical performance of ToF-SIMS in the label-free tissue imaging of small biomolecules, the proposed strategy allows one to simultaneously obtain integrated information of spatial distribution of metabolites, lipids, peptides, proteins, and mRNA at a high resolution in a single measurement. As part of the suggested strategy, we present a sample preparation method suitable for MS imaging. Because a comprehensive method to examine the spatial distribution of multiple biomolecules in tissues has remained elusive, our strategy can be a useful tool to support the understanding of the interactions of biomolecules in tissues as well as pathological mechanisms.


Assuntos
Peptídeos , Espectrometria de Massa de Íon Secundário , Animais , Encéfalo , Camundongos , Camundongos Transgênicos , RNA Mensageiro , Espectrometria de Massa de Íon Secundário/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...