Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 13(12): 7731-7740, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106241

RESUMO

Background: The use of magnetic resonance linear accelerators (MR-LINACs) for clinical treatment has opened up new possibilities and challenges in the field of radiation oncology. However, annual quality assurance (QA) is relatively understudied due to practical considerations. Thus, to overcome the difficulty of measuring the dose with a small water phantom for TRS-398 or TG-51 in all external beam radiation treatment unit environments, such as MR compatibility, we designed a remote phantom with a three-axis changeable capacity for QA. Methods: The designed water phantom was tested under an MR environment. The water phantom system comprised of three parts: a phantom box, a dose measurement tool, and a PMD401 drive system. The UNIDOSE universal dosimeter was used to collect beam data. The manufacturer's developer tools were utilized to position the measurement. To ensure magnetic field homogeneity, a distortion phantom was prepared using sixty fish oil capsules aligned radially to distinguish the oil and free air. The phantom was scanned in both the MR simulator and computed tomography (CT), and the acquired images were analyzed to determine the position shift. Results: The dimensions of the device are 30 cm in the X-axis, 20 cm in the Y-axis, and 17 cm in the Z-axis. Total cost of materials was no more than $10,000 US dollars. Our results indicate that the device can function normally in a regular 1.5 T MR environment without interference from the magnetic field. The water phantom's traveling speed was found to be approximately 5 mm/s with a position difference confined within 6 cm intervals during normal use. The distortion test results showed that the prepared MR environment has uniform magnetic field homogeneity. Conclusions: In this study, we constructed a prototype water phantom device that can function in an MR simulator without interference between the magnetic field and electronic components. Compared to other commercially available MR-LINAC water phantoms, our device offers a more cost-effective solution for routine monthly QA. It can shorten the duration of QA tests and relieve the burden on medical physicists.

2.
J Vis Exp ; (172)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34152316

RESUMO

Neuroscientists use miniature microscopes (miniscopes) to observe neuronal activity in freely behaving animals. The University of California, Los Angeles (UCLA) Miniscope team provides open resources for researchers to build miniscopes themselves. The V3 UCLA Miniscope is one of the most popular open-source miniscopes currently in use. It permits imaging of the fluorescence transients emitted from genetically modified neurons through an objective lens implanted on the superficial cortex (a one-lens system), or in deep brain areas through a combination of a relay lens implanted in the deep brain and an objective lens that is preanchored in the miniscope to observe the relayed image (a two-lens system). Even under optimal conditions (when neurons express fluorescence indicators and the relay lens has been properly implanted), a volume change of the dental cement between the baseplate and its attachment to the skull upon cement curing can cause misalignment with an altered distance between the objective and relay lenses, resulting in the poor image quality. A baseplate is a plate that helps mount the miniscope onto the skull and fixes the working distance between the objective and relay lenses. Thus, changes in the volume of the dental cement around the baseplate alter the distance between the lenses. The present protocol aims to minimize the misalignment problem caused by volume changes in the dental cement. The protocol reduces the misalignment by building an initial foundation of dental cement during relay lens implantation. The convalescence time after implantation is sufficient for the foundation of dental cement to cure the baseplate completely, so the baseplate can be cemented on this scaffold using as little new cement as possible. In the present article, we describe strategies for baseplating in mice to enable imaging of neuronal activity with an objective lens anchored in the miniscope.


Assuntos
Cálcio , Lentes , Animais , Encéfalo , Camundongos , Microscopia , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA