Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Future Sci OA ; 10(1): FSO964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817352

RESUMO

Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.


Combined chemical and CRISPRa-mediated approach leads to efficient generation of human iPSCs.

3.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873468

RESUMO

Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.

6.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172578

RESUMO

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Receptores Fc/metabolismo
7.
PLoS Genet ; 19(5): e1010760, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200393

RESUMO

Heterozygous variants in the glucocerebrosidase (GBA) gene are common and potent risk factors for Parkinson's disease (PD). GBA also causes the autosomal recessive lysosomal storage disorder (LSD), Gaucher disease, and emerging evidence from human genetics implicates many other LSD genes in PD susceptibility. We have systemically tested 86 conserved fly homologs of 37 human LSD genes for requirements in the aging adult Drosophila brain and for potential genetic interactions with neurodegeneration caused by α-synuclein (αSyn), which forms Lewy body pathology in PD. Our screen identifies 15 genetic enhancers of αSyn-induced progressive locomotor dysfunction, including knockdown of fly homologs of GBA and other LSD genes with independent support as PD susceptibility factors from human genetics (SCARB2, SMPD1, CTSD, GNPTAB, SLC17A5). For several genes, results from multiple alleles suggest dose-sensitivity and context-dependent pleiotropy in the presence or absence of αSyn. Homologs of two genes causing cholesterol storage disorders, Npc1a / NPC1 and Lip4 / LIPA, were independently confirmed as loss-of-function enhancers of αSyn-induced retinal degeneration. The enzymes encoded by several modifier genes are upregulated in αSyn transgenic flies, based on unbiased proteomics, revealing a possible, albeit ineffective, compensatory response. Overall, our results reinforce the important role of lysosomal genes in brain health and PD pathogenesis, and implicate several metabolic pathways, including cholesterol homeostasis, in αSyn-mediated neurotoxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Envelhecimento/metabolismo
8.
N Z Med J ; 136(1573): 94-105, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37054459

RESUMO

INTRODUCTION: Inhalers are commonly used in the management of respiratory diseases. The propellants used in pressurised metered dose inhalers (pMDIs) are potent greenhouse gases and carry a substantial global warming potential. Dry powder inhalers (DPIs) are propellant-free alternatives that have fewer consequences on the environment, while being equally effective. In this study, we assessed patients' and clinicians' attitudes towards choosing inhalers that have a lesser environmental impact. METHODS: Surveys of patients and practitioners were undertaken in primary and secondary care settings in Dunedin and Invercargill. Fifty-three patient and 16 practitioner responses were obtained. RESULTS: Sixty-four percent of patients were using pMDIs, while 53% were using DPIs. Sixty-nine percent of patients believed that the environment is an important consideration when switching inhalers. Sixty-three percent of practitioners were aware of the global warming potential of inhalers. Despite this, 56% of practitioners predominantly prescribe or recommend pMDIs. The 44% of practitioners who mostly prescribe DPIs were more comfortable doing so based on environmental impact alone. CONCLUSION: Most respondents believe global warming is an important issue and would consider changing their inhaler to a more environmentally friendly type. Many people were not aware that pressurised metered dose inhalers have a substantial carbon footprint. Greater awareness of their environmental impacts may encourage the use of inhalers with lower global warming potential.


Assuntos
Aquecimento Global , Inaladores Dosimetrados , Humanos , Nova Zelândia , Inaladores de Pó Seco , Pegada de Carbono , Administração por Inalação
9.
Nat Commun ; 14(1): 1940, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024455

RESUMO

Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3 (LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3 (LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.

10.
Nat Commun ; 13(1): 7341, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446823

RESUMO

Allogeneic natural killer (NK) cell adoptive transfer is a promising treatment for several cancers but is less effective for the treatment of multiple myeloma. In this study, we report on quadruple gene-engineered induced pluripotent stem cell (iPSC)-derived NK cells designed for mass production from a renewable source and for dual targeting against multiple myeloma through the introduction of an NK cell-optimized chimeric antigen receptor (CAR) specific for B cell maturation antigen (BCMA) and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity when combined with therapeutic anti-CD38 antibodies. Additionally, these cells express a membrane-bound interleukin-15 fusion molecule to enhance function and persistence along with knock out of CD38 to prevent antibody-mediated fratricide and enhance NK cell metabolic fitness. In various preclinical models, including xenogeneic adoptive transfer models, quadruple gene-engineered NK cells consistently demonstrate durable antitumor activity independent of exogenous cytokine support. Results presented here support clinical translation of this off-the-shelf strategy for effective treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Células Matadoras Naturais , Antígeno de Maturação de Linfócitos B , Receptores de Células Matadoras Naturais , Subfamília D de Receptores Semelhantes a Lectina de Células NK
11.
Cancers (Basel) ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35954501

RESUMO

Identification of mismatch repair (MMR)-deficient colorectal cancers (CRCs) is recommended for Lynch syndrome (LS) screening, and supports targeting of immune checkpoint inhibitors. Microsatellite instability (MSI) analysis is commonly used to test for MMR deficiency. Testing biopsies prior to tumour resection can inform surgical and therapeutic decisions, but can be limited by DNA quantity. MSI analysis of voided urine could also provide much needed surveillance for genitourinary tract cancers in LS. Here, we reconfigure an existing molecular inversion probe-based MSI and BRAF c.1799T > A assay to a multiplex PCR (mPCR) format, and demonstrate that it can sample >140 unique molecules per marker from <1 ng of DNA and classify CRCs with 96−100% sensitivity and specificity. We also show that it can detect increased MSI within individual and composite CRC biopsies from LS patients, and within preoperative urine cell free DNA (cfDNA) from two LS patients, one with an upper tract urothelial cancer, the other an undiagnosed endometrial cancer. Approximately 60−70% of the urine cfDNAs were tumour-derived. Our results suggest that mPCR sequence-based analysis of MSI and mutation hotspots in CRC biopsies could facilitate presurgery decision making, and could enable postal-based screening for urinary tract and endometrial tumours in LS patients.

12.
Nat Biomed Eng ; 6(11): 1284-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941192

RESUMO

The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αß+ CAR T cells that perform similarly to CD8αß+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αß+ T cells for a broad range of immunotherapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Linfócitos T , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Antígenos de Linfócitos T , Antígenos CD8/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
13.
Blood ; 140(23): 2451-2462, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917442

RESUMO

Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells, termed iDuo NK cells, displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models, iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore, iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19, features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.


Assuntos
Leucemia , Neoplasias , Humanos , Deriva e Deslocamento Antigênicos , Leucemia/terapia , Células Matadoras Naturais
14.
Colorectal Dis ; 24(10): 1227-1237, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35680613

RESUMO

AIM: Colorectal cancer is the second commonest cause of cancer death worldwide. Colonoscopy plays a key role in the control of colorectal cancer and, in that regard, maximizing detection (and removal) of pre-cancerous adenomas at colonoscopy is imperative. GI Genius™ (Medtronic Ltd) is a computer-aided detection system that integrates with existing endoscopy systems and improves adenoma detection during colonoscopy. COLO-DETECT aims to assess the clinical and cost effectiveness of GI Genius™ in UK routine colonoscopy practice. METHODS AND ANALYSIS: Participants will be recruited from patients attending for colonoscopy at National Health Service sites in England, for clinical symptoms, surveillance or within the national Bowel Cancer Screening Programme. Randomization will involve a 1:1 allocation ratio (GI Genius™-assisted colonoscopy:standard colonoscopy) and will be stratified by age category (<60 years, 60-<74 years, ≥74 years), sex, hospital site and indication for colonoscopy. Demographic data, procedural data, histology and post-procedure patient experience and quality of life will be recorded. COLO-DETECT is designed and powered to detect clinically meaningful differences in mean adenomas per procedure and adenoma detection rate between GI Genius™-assisted colonoscopy and standard colonoscopy groups. The study will close when 1828 participants have had a complete colonoscopy. An economic evaluation will be conducted from the perspective of the National Health Service. A patient and public representative is contributing to all stages of the trial. Registered at ClinicalTrials.gov (NCT04723758) and ISRCTN (10451355). WHAT WILL THIS TRIAL ADD TO THE LITERATURE?: COLO-DETECT will be the first multi-centre randomized controlled trial evaluating GI Genius™ in real world colonoscopy practice and will, uniquely, evaluate both clinical and cost effectiveness.


Assuntos
Adenoma , Pólipos do Colo , Neoplasias Colorretais , Humanos , Pessoa de Meia-Idade , Inteligência Artificial , Medicina Estatal , Qualidade de Vida , Neoplasias Colorretais/patologia , Colonoscopia/métodos , Adenoma/patologia , Detecção Precoce de Câncer/métodos , Pólipos do Colo/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
J Vis Exp ; (182)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35499356

RESUMO

The capillary aerosol generator (CAG) is operated with the principal of thermal liquid evaporation through heating of e-liquid in the initial phase, followed by nucleation and condensation regulated through a mixture of airflow to generate aerosols, such as in an electronic cigarette (EC). The CAG is particularly useful in generating aerosols of large volumes in a continuous manner, for instances such as in vivo inhalation toxicology studies, where usage of ECs is not feasible. The thermal effects of generating aerosol from the CAG are similar in terms of temperature applied in an EC, thus allowing investigators to assess the vapors of e-liquids at scale and reproducibility. As the operation of the CAG allows users to control critical parameters such as the flow rate of e-liquid, heating temperatures and dilution air flows, it allows investigators to test various e-liquid formulations in a well-controlled device. Properties, such as aerosol particle size, are demonstrated to be regulated with the air flow rate with respect to the e-liquid flow and e-liquid composition. The CAG, however, is limited in assessing common EC-related issues, such as overheating of its elements. We seek to demonstrate that the CAG can generate aerosol that is reproducible and continuous, by assessing the chemical and physical aerosol characteristics with a chosen e-liquid formulation. The protocol describes the operating parameters of liquid flow rate, dilution air-flow rates and operating procedures needing to optimize the aerosol concentration and particle size required for an in vivo toxicology study. Presenting the representative results from the protocol and discussing the challenges and applications of working with a CAG, we demonstrate that CAG can be used in a reproducible fashion. The technology and protocol, that has been developed from prior work, serve as a foundation for future innovations for laboratory-controlled aerosol generation investigations.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis , Tamanho da Partícula , Reprodutibilidade dos Testes , Veias
16.
Cell Rep ; 39(7): 110817, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584678

RESUMO

Drosophila Toll-1 and all mammalian Toll-like receptors regulate innate immunity. However, the functions of the remaining eight Toll-related proteins in Drosophila are not fully understood. Here, we show that Drosophila Toll-9 is necessary and sufficient for a special form of compensatory proliferation after apoptotic cell loss (undead apoptosis-induced proliferation [AiP]). Mechanistically, for AiP, Toll-9 interacts with Toll-1 to activate the intracellular Toll-1 pathway for nuclear translocation of the NF-κB-like transcription factor Dorsal, which induces expression of the pro-apoptotic genes reaper and hid. This activity contributes to the feedback amplification loop that operates in undead cells. Given that Toll-9 also functions in loser cells during cell competition, we define a general role of Toll-9 in cellular stress situations leading to the expression of pro-apoptotic genes that trigger apoptosis and apoptosis-induced processes such as AiP. This work identifies conceptual similarities between cell competition and AiP.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Apoptose/genética , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retroalimentação , Mamíferos/metabolismo
17.
Sci Rep ; 12(1): 5832, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388053

RESUMO

Augmented reality (AR) devices, as smart glasses, enable users to see both the real world and virtual images simultaneously, contributing to an immersive experience in interactions and visualization. Recently, to reduce the size and weight of smart glasses, waveguides incorporating holographic optical elements in the form of advanced grating structures have been utilized to provide light-weight solutions instead of bulky helmet-type headsets. However current waveguide displays often have limited display resolution, efficiency and field-of-view, with complex multi-step fabrication processes of lower yield. In addition, current AR displays often have vergence-accommodation conflict in the augmented and virtual images, resulting in focusing-visual fatigue and eye strain. Here we report metasurface optical elements designed and experimentally implemented as a platform solution to overcome these limitations. Through careful dispersion control in the excited propagation and diffraction modes, we design and implement our high-resolution full-color prototype, via the combination of analytical-numerical simulations, nanofabrication and device measurements. With the metasurface control of the light propagation, our prototype device achieves a 1080-pixel resolution, a field-of-view more than 40°, an overall input-output efficiency more than 1%, and addresses the vergence-accommodation conflict through our focal-free implementation. Furthermore, our AR waveguide is achieved in a single metasurface-waveguide layer, aiding the scalability and process yield control.

18.
Curr Oncol ; 28(6): 4341-4356, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34898549

RESUMO

BACKGROUND: The interval between suspected cancer and diagnosis for symptomatic patients is often fragmented, leading to diagnosis delays and increased patient stress. We conducted an exploratory qualitative study to explore barriers and facilitators to implementing and sustaining current initiatives across Canada that optimize early cancer diagnosis, with particular relevance for symptomatic patients. METHODS: The national study included a document review and key informant interviews with purposefully recruited participants. Data were analyzed by two researchers using descriptive statistics and thematic analysis. RESULTS: Twenty-two participants from eight provinces participated in key informant interviews and reported on 17 early cancer diagnosis initiatives. Most initiatives (88%) were in early phases of implementation. Two patient-facing and eight provider/organization barriers to implementation (e.g., lack of stakeholder buy-in and limited resources) and five facilitators for implementation and sustainability were identified. Opportunities to improve early cancer diagnosis initiatives included building relationships with stakeholders, co-creating initiatives, developing initiatives for Indigenous and underserved populations, optimizing efficiency and sustainability, and standardizing metrics to evaluate impact. CONCLUSION: Early cancer diagnosis initiatives in Canada are in early implementation phases. Lack of stakeholder buy-in and limited resources pose a challenge to sustainability. We present opportunities for funders and policymakers to optimize the use and potential impact of early cancer diagnosis initiatives.


Assuntos
Neoplasias , Canadá , Humanos , Neoplasias/diagnóstico , Pesquisa Qualitativa
19.
Cell Stem Cell ; 28(12): 2062-2075.e5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34525347

RESUMO

Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC). The clonal iPSC line was engineered to express a high affinity, non-cleavable version of the Fc receptor CD16a and a membrane-bound interleukin (IL)-15/IL-15R fusion protein. The third edit was a knockout of the ecto-enzyme CD38, which hydrolyzes NAD+. Natural killer (NK) cells derived from these uniformly engineered iPSCs, termed iADAPT, displayed metabolic features and gene expression profiles mirroring those of cytomegalovirus-induced adaptive NK cells. iADAPT NK cells persisted in vivo in the absence of exogenous cytokine and elicited superior antitumor activity. Our findings suggest that unique subsets of the immune system can be modeled through iPSC technology for effective treatment of patients with advanced cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Células Cultivadas , Humanos , Imunoterapia , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/terapia
20.
Mol Ther ; 29(12): 3410-3421, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174441

RESUMO

Natural killer (NK) cells mediate the cytolysis of transformed cells and are currently used as an adoptive cellular therapy to treat cancer. Infection with human cytomegalovirus has been shown to expand a subset of "adaptive" NK cells expressing the activation receptor NKG2C that have preferred functional attributes distinct from conventional NK cells. Because NKG2C delivers a strong activating signal to NK cells, we hypothesized that NKG2C could specifically trigger NK-cell-mediated antitumor responses. To elicit a tumor-directed response from NKG2C+ NK cells, we created an anti-NKG2C/IL-15/anti-CD33 killer engager called NKG2C-KE that directs NKG2C+ cells to target CD33+ cells and tumor-associated antigen expressed by acute myelogenous leukemia cells. The NKG2C-KE induced specific degranulation, interferon-γ production, and proliferation of NKG2C-expressing NK cells from patients who reactivated cytomegalovirus after allogeneic transplantation. The NKG2C-KE was also tested in a more homogeneous system using induced pluripotent stem cell (iPSC)-derived NK (iNK) cells that have been engineered to express NKG2C at high levels. The NKG2C-KE triggered iNK-cell-mediated cytotoxicity against CD33+ cells and primary AML blasts. The NKG2C-KE-specific interaction with adaptive NK and NKG2C+ iNK cells represents a new immunotherapeutic paradigm that uniquely engages highly active NK cells to induce cytotoxicity against AML through redirected targeting.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Citomegalovirus , Humanos , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...