Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Circ Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828596

RESUMO

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDLs relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.

2.
ACS Biomater Sci Eng ; 10(6): 3896-3908, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38748191

RESUMO

Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba2+ ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.


Assuntos
Alginatos , Alginatos/química , Humanos , Células HEK293 , Microfluídica/métodos , Microfluídica/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química
3.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479648

RESUMO

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas LDL , Transcitose , Animais , Humanos , Masculino , Camundongos , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica , Receptores Depuradores Classe B/metabolismo
4.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489029

RESUMO

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Assuntos
Permeabilidade Capilar , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Humanos , Masculino , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Proteômica , Camundongos Endogâmicos C57BL
5.
Circ Res ; 134(3): 269-289, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174557

RESUMO

BACKGROUND: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS: EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1ß activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS: Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS: Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Humanos , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Aterosclerose/metabolismo
7.
Elife ; 122023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773612

RESUMO

Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Quimiotaxia de Leucócito , Imunidade Inata , Neutrófilos , Infecções Estafilocócicas/microbiologia
8.
Viruses ; 15(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37515150

RESUMO

Respiratory pathogens such as influenza and SARS-CoV-2 can cause severe lung infections leading to acute respiratory distress syndrome (ARDS). The pathophysiology of ARDS includes an excessive host immune response, lung epithelial and endothelial cell death and loss of the epithelial and endothelial barrier integrity, culminating in pulmonary oedema and respiratory failure. Traditional approaches for the treatment of respiratory infections include drugs that exert direct anti-pathogen effects (e.g., antivirals). However, such agents are typically ineffective or insufficient after the development of ARDS. Modulation of the host response has emerged as a promising alternative therapeutic approach to mitigate damage to the host for the treatment of respiratory infections; in principle, this strategy should also be less susceptible to the development of pathogen resistance. In this review, we discuss different host-targeting strategies against pathogen-induced ARDS. Developing therapeutics that enhance the host response is a pathogen-agnostic approach that will help prepare for the next pandemic.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Pulmão , Síndrome do Desconforto Respiratório/terapia , Imunidade
9.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L135-L142, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310768

RESUMO

In acute lung injury, the lung endothelial barrier is compromised. Loss of endothelial barrier integrity occurs in association with decreased levels of the tight junction protein claudin-5. Restoration of their levels by gene transfection may improve the vascular barrier, but how to limit transfection solely to regions of the lung that are injured is unknown. We hypothesized that thoracic ultrasound in combination with intravenous microbubbles (USMBs) could be used to achieve regional gene transfection in injured lung regions and improve endothelial barrier function. Since air blocks ultrasound energy, insonation of the lung is only achieved in areas of lung injury (edema and atelectasis); healthy lung is spared. Cavitation of the microbubbles achieves local tissue transfection. Here we demonstrate successful USMB-mediated gene transfection in the injured lungs of mice. After thoracic insonation, transfection was confined to the lung and only occurred in the setting of injured (but not healthy) lung. In a mouse model of acute lung injury, we observed downregulation of endogenous claudin-5 and an acute improvement in lung vascular leakage and in oxygenation after claudin-5 overexpression by transfection. The improvement occurred without any impairment of the immune response as measured by pathogen clearance, alveolar cytokines, and lung histology. In conclusion, USMB-mediated transfection targets injured lung regions and is a novel approach to the treatment of lung injury.NEW & NOTEWORTHY Acute respiratory distress syndrome is characterized by spatial heterogeneity, with severely injured lung regions adjacent to relatively normal areas. This makes targeting treatment to the injured regions difficult. Here we use thoracic ultrasound and intravenous microbubbles (USMBs) to direct gene transfection specifically to injured lung regions. Transfection of the tight junction protein claudin-5 improved oxygenation and decreased vascular leakage without impairing innate immunity. These findings suggest that USMB is a novel treatment for ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/patologia , Claudina-5/genética , Claudina-5/metabolismo , Imunidade Inata , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/patologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Transfecção , Ultrassonografia de Intervenção
11.
Curr Atheroscler Rep ; 25(8): 457-465, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37358804

RESUMO

PURPOSE OF REVIEW: The accumulation of LDL in the arterial intima is an initiating event in atherosclerosis. After decades of controversy, it is now clear that transcytosis of LDL across an intact endothelial monolayer contributes to its intimal deposition. We review recent observations in this field and address the question of whether LDL transcytosis can be manipulated therapeutically. RECENT FINDINGS: The development of a live-cell imaging method for studying transcytosis using total internal reflection fluorescence (TIRF) microscopy has catalyzed recent discoveries. LDL transcytosis is mediated by SR-BI and ALK1. Estrogen down-regulates SR-BI and inhibits LDL transcytosis, while the nuclear structural protein HMGB1 promotes LDL transcytosis. LDL transcytosis by ALK1 is independent of the receptor's kinase activity and is antagonized by BMP9, ALK1's canonical ligand. Inflammation stimulates LDL transcytosis. Identifying the function and mechanisms of LDL transcytosis may ultimately permit its therapeutic manipulation.


Assuntos
Aterosclerose , Lipoproteínas LDL , Humanos , Lipoproteínas LDL/metabolismo , Células Endoteliais/metabolismo , Transcitose , Aterosclerose/metabolismo , Endotélio Vascular/metabolismo
12.
Front Immunol ; 14: 1181016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153544

RESUMO

Atypical chemokine receptor-1 (ACKR1), previously known as the Duffy antigen receptor for chemokines, is a widely conserved cell surface protein that is expressed on erythrocytes and the endothelium of post-capillary venules. In addition to being the receptor for the parasite causing malaria, ACKR1 has been postulated to regulate innate immunity by displaying and trafficking chemokines. Intriguingly, a common mutation in its promoter leads to loss of the erythrocyte protein but leaves endothelial expression unaffected. Study of endothelial ACKR1 has been limited by the rapid down-regulation of both transcript and protein when endothelial cells are extracted and cultured from tissue. Thus, to date the study of endothelial ACKR1 has been limited to heterologous over-expression models or the use of transgenic mice. Here we report that exposure to whole blood induces ACKR1 mRNA and protein expression in cultured primary human lung microvascular endothelial cells. We found that contact with neutrophils is required for this effect. We show that NF-κB regulates ACKR1 expression and that upon removal of blood, the protein is rapidly secreted by extracellular vesicles. Finally, we confirm that endogenous ACKR1 does not signal upon stimulation with IL-8 or CXCL1. Our observations define a simple method for inducing endogenous endothelial ACKR1 protein that will facilitate further functional studies.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Animais , Humanos , Camundongos , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Vesículas Extracelulares/metabolismo , Neutrófilos/metabolismo
13.
bioRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162986

RESUMO

Rationale: Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs) and proteins that are released by cells as a form of cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the capacity to release EVs capable of governing recipient cells within two separate compartments, and how this is affected by endothelial activation commonly seen in atheroprone regions. Objective: Given their boundary location, we propose that ECs utilize bidirectional release of distinct EV cargo in quiescent and activated states to communicate with cells within the circulation and blood vessel wall. Methods and Results: EVs were isolated from primary human aortic endothelial cells (ECs) (+/-IL-1ß activation), quantified, and analysed by miRNA transcriptomics and proteomics. Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs on transwells. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined that compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and SMCs, respectively. Conclusions: The demonstration that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.

14.
Matern Child Nutr ; 19(1): e13438, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254499

RESUMO

Breastfeeding (BF) has been identified as a protective factor against childhood obesity. However, evidence of the association between BF duration and adiposity remains inconclusive. Few studies have been conducted among Southeast Asian infants that have measured body composition during infancy using the gold standard stable isotope method. This study aimed to evaluate the association between BF duration and body composition during infancy. Healthy full-term Thai infants aged 6-8 months (n = 60) receiving exclusive or predominant BF for at least 3 months were recruited. Skinfold thickness (SFT) was measured by well-trained investigators. Body composition was assessed by the deuterium dilution technique. Infants with longer BF duration (>6 months; mean 7.5 ± 0.5 months, n = 29) had a higher subscapular SFT z-score than those with shorter BF duration (≤6 months; mean 5.3± 0.9 months, n = 31) by 0.48 (95% confidence interval [CI]: 0.01-0.94). After adjustment for age and sex, BF duration and age at introduction of complementary feeding (CF) were positively associated with fat mass and fat mass index at 6-8 months. One month increase in BF duration and CF age was associated with a 0.37 (95% CI: 0.05, 0.69) kg/m2 and 0.76 (95% CI: 0.18, 1.34) kg/m2 increase in the fat mass index, respectively. After adjusting for infant body mass index (BMI) during the earlier infancy period, the strength of the association was attenuated. This finding may reflect reverse causality where infants with lower BMI received formula or CF earlier. A longitudinal study with follow-up into childhood is warranted to confirm the effects of BF on adiposity in infancy and childhood.


Assuntos
Adiposidade , Obesidade Infantil , Lactente , Feminino , Criança , Humanos , Aleitamento Materno , Estudos Longitudinais , Obesidade Infantil/epidemiologia , Índice de Massa Corporal , Composição Corporal
15.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432707

RESUMO

Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical ultrasound system would facilitate the eventual translation of the technology to the bedside. In this paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases with increasing mechanical index and ultrasound treatment time and decreases with increasing pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of microbubble concentrations.

17.
J Lipid Res ; 63(9): 100256, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921881

RESUMO

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Acilação , Aciltransferases/metabolismo , Alcinos , Azetidinas , Coenzima A/metabolismo , Cisteína , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Miristatos , Nitrilas , Palmitatos , Pirazóis , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Estearatos
18.
Front Plant Sci ; 13: 899740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620686

RESUMO

Heveins and hevein-containing (hev-) lectins play important roles in stress and pathogenic responses in plants but cause health concerns in humans. Hev-hololectins contain multiple modular hev-peptide domains and are abundantly present in cereals and pseudocereals. However, it is unclear why some cereal hev-hololectins are presented as different forms of proteolytically processed proteoforms. Here we show the precursor architectures of hev-hololectins lead to different processing mechanisms to give either hololectins or hevein-like peptides. We used mass spectrometry and datamining to screen hev-peptides from common cereals, and identified from the oat plant Avena sativa nine novel hevein-like peptides, avenatide aV1-aV9. Bioinformatic analysis revealed that asparaginyl endopeptidase (AEP) can be responsible for the maturation of the highly homologous avenatides from five oat hev-hololectin precursors, each containing four tandemly repeating, hev-like avenatide domains connected by AEP-susceptible linkers with 13-16 residues in length. Further analysis of cereal hev-hololectins showed that the linker lengths provide a distinguishing feature between their cleavable and non-cleavable precursors, with the cleavables having considerably longer linkers (>13 amino acids) than the non-cleavables (<6 amino acids). A detailed study of avenatide aV1 revealed that it contains eight cysteine residues which form a structurally compact, metabolic-resistant cystine-knotted framework with a well-defined chitin-binding site. Antimicrobial assays showed that avenatide aV1 is anti-fungal and inhibits the growth of phyto-pathogenic fungi. Together, our findings of cleavable and non-cleavable hololectins found in cereals expand our knowledge to their biosynthesis and provide insights for hololectin-related health concerns in human.

19.
Methods Mol Biol ; 2440: 115-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218536

RESUMO

Apical-to-basal transcytosis by endothelial cells can be visualized and quantified using total internal reflection fluorescence (TIRF) microscopy of the basal membrane. Past techniques to study transcytosis including electron microscopy and transwells have several limitations such as confounding from paracellular leakage, low transfection efficiency, and the largely descriptive nature of electron microscopy. After the addition of a fluorescent ligand to the apical endothelial surface, using TIRF to measure exocytosis at the basal membrane bypasses these issues by studying transcytosis across a single cell of a confluent endothelial monolayer in real time. A major benefit of TIRF is that only a small volume of the cell is illuminated, thus greatly reducing background noise from the overlying cytosol in the images. This protocol outlines the steps to image and quantify exocytosis of apically applied fluorophore-tagged low-density lipoprotein (LDL) using TIRF microscopy and MATLAB. A similar approach can be used to study endothelial transcytosis of other ligands such as albumin or high-density lipoprotein.


Assuntos
Células Endoteliais , Transcitose , Exocitose , Lipoproteínas LDL , Microscopia de Fluorescência/métodos
20.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058252

RESUMO

BACKGROUND: Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS: We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS: Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION: This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.


Assuntos
Fumar Cigarros , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Fumar Cigarros/efeitos adversos , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...