Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38749425

RESUMO

A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.

2.
Neuron ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38692278

RESUMO

Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.

3.
Curr Biol ; 34(5): 1059-1075.e5, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38402616

RESUMO

Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca2+ imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.


Assuntos
Drosophila , Neurônios , Animais , Drosophila/fisiologia , Vias Eferentes , Insetos
4.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
5.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106104

RESUMO

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.

6.
J Exp Clin Cancer Res ; 42(1): 346, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124207

RESUMO

BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Animais , Pré-Escolar , Humanos , Camundongos , Apoptose , Neoplasias do Sistema Nervoso Central/metabolismo , Reparo do DNA , Inibidores Enzimáticos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo
7.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37961618

RESUMO

A primary cilium is a thin membrane-bound extension off a cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. While many cell types have a primary cilium, little is known about primary cilia in the brain, where they are less accessible than cilia on cultured cells or epithelial tissues and protrude from cell bodies into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs), but were absent from oligodendrocytes and microglia. Structural comparisons revealed that the membrane structure at the base of the cilium and the microtubule organization differed between neurons and glia. OPC cilia were distinct in that they were the shortest and contained pervasive internal vesicles only occasionally observed in neuron and astrocyte cilia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting cilia are well poised to encounter locally released signaling molecules. Cilia proximity to synapses was random, not enriched, in the synapse-rich neuropil. The internal anatomy, including microtubule changes and centriole location, defined key structural features including cilium placement and shape. Together, the anatomical insights both within and around neuron and glia cilia provide new insights into cilia formation and function across cell types in the brain.

8.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745401

RESUMO

The cerebellar cortex contributes to diverse behaviors by transforming mossy fiber inputs into predictions in the form of Purkinje cell (PC) outputs, and then refining those predictions1. Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex2, and are vital to cerebellar processing1,3. MLIs are thought to primarily inhibit PCs and suppress the plasticity of excitatory synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs4-7, but the functional significance of these connections is not known1,3. Behavioral studies suggest that cerebellar-dependent learning is gated by disinhibition of PCs, but the source of such disinhibition has not been identified8. Here we find that two recently recognized MLI subtypes2, MLI1 and MLI2, have highly specialized connectivity that allows them to serve very different functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond time scale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, they primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent learning8. These findings require a major reevaluation of processing within the cerebellum in which disinhibition, a powerful circuit motif present in the cerebral cortex and elsewhere9-17, greatly increases the computational power and flexibility of the cerebellum. They also suggest that millisecond time scale synchronous firing of electrically-coupled MLI1s helps regulate the output of the cerebellar cortex by synchronously pausing PC firing, which has been shown to evoke precisely-timed firing in PC targets18.

9.
Neuron ; 111(20): 3211-3229.e9, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37725982

RESUMO

Across mammalian skin, structurally complex and diverse mechanosensory end organs respond to mechanical stimuli and enable our perception of dynamic, light touch. How forces act on morphologically dissimilar mechanosensory end organs of the skin to gate the requisite mechanotransduction channel Piezo2 and excite mechanosensory neurons is not understood. Here, we report high-resolution reconstructions of the hair follicle lanceolate complex, Meissner corpuscle, and Pacinian corpuscle and the subcellular distribution of Piezo2 within them. Across all three end organs, Piezo2 is restricted to the sensory axon membrane, including axon protrusions that extend from the axon body. These protrusions, which are numerous and elaborate extensively within the end organs, tether the axon to resident non-neuronal cells via adherens junctions. These findings support a unified model for dynamic touch in which mechanical stimuli stretch hundreds to thousands of axon protrusions across an end organ, opening proximal, axonal Piezo2 channels and exciting the neuron.


Assuntos
Mecanotransdução Celular , Células de Merkel , Animais , Células de Merkel/fisiologia , Mecanotransdução Celular/fisiologia , Imageamento Tridimensional , Canais Iônicos/metabolismo , Mecanorreceptores/fisiologia , Mamíferos/metabolismo
10.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591240

RESUMO

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Assuntos
Corpo Estriado , Dopamina , Animais , Camundongos , Mesencéfalo , Motivação , Movimento , Sinapses
11.
Neuron ; 111(20): 3230-3243.e14, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37562405

RESUMO

Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Células Receptoras Sensoriais/fisiologia , Propriocepção/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo
12.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398440

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.

13.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333334

RESUMO

Natural behaviors are a coordinated symphony of motor acts which drive self-induced or reafferent sensory activation. Single sensors only signal presence and magnitude of a sensory cue; they cannot disambiguate exafferent (externally-induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to make appropriate decisions and initiate adaptive behavioral outcomes. This is mediated by predictive motor signaling mechanisms, which emanate from motor control pathways to sensory processing pathways, but how predictive motor signaling circuits function at the cellular and synaptic level is poorly understood. We use a variety of techniques, including connectomics from both male and female electron microscopy volumes, transcriptomics, neuroanatomical, physiological and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs), which putatively provide predictive motor signals to several sensory and motor neuropil. Both AHN pairs receive input primarily from an overlapping population of descending neurons, many of which drive wing motor output. The two AHN pairs target almost exclusively non-overlapping downstream neural networks including those that process visual, auditory and mechanosensory information as well as networks coordinating wing, haltere, and leg motor output. These results support the conclusion that the AHN pairs multi-task, integrating a large amount of common input, then tile their output in the brain, providing predictive motor signals to non-overlapping sensory networks affecting motor control both directly and indirectly.

14.
ArXiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911282

RESUMO

Comprehensive, synapse-resolution imaging of the brain will be crucial for understanding neuronal computations and function. In connectomics, this has been the sole purview of volume electron microscopy (EM), which entails an excruciatingly difficult process because it requires cutting tissue into many thin, fragile slices that then need to be imaged, aligned, and reconstructed. Unlike EM, hard X-ray imaging is compatible with thick tissues, eliminating the need for thin sectioning, and delivering fast acquisition, intrinsic alignment, and isotropic resolution. Unfortunately, current state-of-the-art X-ray microscopy provides much lower resolution, to the extent that segmenting membranes is very challenging. We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality, showing its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.

15.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993253

RESUMO

Specialized mechanosensory end organs within mammalian skin-hair follicle-associated lanceolate complexes, Meissner corpuscles, and Pacinian corpuscles-enable our perception of light, dynamic touch 1 . In each of these end organs, fast-conducting mechanically sensitive neurons, called Aß low-threshold mechanoreceptors (Aß LTMRs), associate with resident glial cells, known as terminal Schwann cells (TSCs) or lamellar cells, to form complex axon ending structures. Lanceolate-forming and corpuscle-innervating Aß LTMRs share a low threshold for mechanical activation, a rapidly adapting (RA) response to force indentation, and high sensitivity to dynamic stimuli 1-6 . How mechanical stimuli lead to activation of the requisite mechanotransduction channel Piezo2 7-15 and Aß RA-LTMR excitation across the morphologically dissimilar mechanosensory end organ structures is not understood. Here, we report the precise subcellular distribution of Piezo2 and high-resolution, isotropic 3D reconstructions of all three end organs formed by Aß RA-LTMRs determined by large volume enhanced Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) imaging. We found that within each end organ, Piezo2 is enriched along the sensory axon membrane and is minimally or not expressed in TSCs and lamellar cells. We also observed a large number of small cytoplasmic protrusions enriched along the Aß RA-LTMR axon terminals associated with hair follicles, Meissner corpuscles, and Pacinian corpuscles. These axon protrusions reside within close proximity to axonal Piezo2, occasionally contain the channel, and often form adherens junctions with nearby non-neuronal cells. Our findings support a unified model for Aß RA-LTMR activation in which axon protrusions anchor Aß RA-LTMR axon terminals to specialized end organ cells, enabling mechanical stimuli to stretch the axon in hundreds to thousands of sites across an individual end organ and leading to activation of proximal Piezo2 channels and excitation of the neuron.

17.
Nat Methods ; 20(2): 295-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585455

RESUMO

We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient-a critical requirement for the processing of future petabyte-sized datasets.


Assuntos
Processamento de Imagem Assistida por Computador , Neurônios , Processamento de Imagem Assistida por Computador/métodos
18.
Nature ; 613(7944): 543-549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36418404

RESUMO

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Assuntos
Córtex Cerebelar , Rede Nervosa , Vias Neurais , Neurônios , Animais , Camundongos , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Córtex Cerebelar/ultraestrutura , Redes Neurais de Computação , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Microscopia Eletrônica de Transmissão
19.
Pharmaceutics ; 14(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35745780

RESUMO

Pulsed ultrasound combined with microbubbles use can disrupt the blood-brain barrier (BBB) temporarily; this technique opens a temporal window to deliver large therapeutic molecules into brain tissue. There are published studies to discuss the efficacy and safety of the different ultrasound parameters, microbubble dosages and sizes, and sonication schemes on BBB disruption, but optimal the paradigm is still under investigation. Our study is aimed to investigate how different sonication parameters, time, and microbubble dose can affect BBB disruption, the dynamics of BBB disruption, and the efficacy of different sonication schemes on BBB disruption. Method: We used pulsed weakly focused ultrasound to open the BBB of C57/B6 mice. Evans blue dye (EBD) was used to determine the degree of BBB disruption. With a given acoustic pressure of 0.56 MPa and pulse repetitive frequency of 1 Hz, burst lengths of 10 ms to 50 ms, microbubbles of 100 µL/kg to 300 µL/kg, and sonication times of 60 s to 150 s were used to open the BBB for parameter study. Brain EBD accumulation was measured at 1, 4, and 24 h after sonication for the time-response relationship study; EBD of 100 mg/kg to 200 mg/kg was administered for the dose-response relationship study; EBD injection 0 to 6 h after sonication was performed for the BBB disruption dynamic study; brain EBD accumulation induced by one sonication and two sonications was investigated to study the effectiveness on BBB disruption; and a histology study was performed for brain tissue damage evaluation. Results: Pulsed weakly focused ultrasound opens the BBB extensively. Longer burst lengths and a larger microbubble dose result in a higher degree of BBB disruption; a sonication time longer than 60 s did not increase BBB disruption; brain EBD accumulation peaks 1 h after sonication and remains 81% of the peak level 24 h after sonication; the EBD dose administered correlates with brain EBD accumulation; BBB disruption decreases as time goes on after sonication and lasts for 6 h at least; and brain EBD accumulation induced by two sonication increases 74.8% of that induced by one sonication. There was limited adverse effects associated with sonication, including petechial hemorrhages and mild neuronal degeneration. Conclusions: BBB can be opened extensively and reversibly by pulsed weakly focused ultrasound with limited brain tissue damage. Since EBD combines with albumin in plasma to form a conjugate of 83 kDa, these results may simulate ultrasound-induced brain delivery of therapeutic molecules of this size scale. The result of our study may contribute to finding the optimal paradigm of focused ultrasound-induced BBB disruption.

20.
J Pediatr Orthop ; 42(8): 451-455, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35765865

RESUMO

BACKGROUND: Orthopaedic wound complications are often associated with extensive surgeries and patient medical conditions. However, we noticed wound complications in minor growth modification surgeries in children, including guided growth and epiphysiodesis. Herein, we report the complication rate and risk factors associated with pediatric growth modification surgeries. METHODS: This retrospective study reviewed surgical wound complications in 622 pediatric orthopaedic patients who underwent growth modification surgeries (418 children) or osteotomies (204 children) in the lower extremities in a single center between 2007 and 2019. The grades II and III complications assessed using the modified Clavien-Dindo-Sink complication classification system were compared between growth modification and osteotomy. Risk factors for complications, including the type of surgery, age, body mass index, neuromuscular disease, operation time, surgical sites per patient, surgical location, and implant types, were analyzed using the logistic regression. RESULTS: The complication rate was 6.9% per patient and 3.6% per surgical site (29 sites in 29 patients comprising 21 grade II and 8 grade III) in the growth modification group, which was >1.0% per patient and 0.6% per site in the osteotomy group (2 sites in 2 patients comprising 2 grade III infections; P =0.001). Among 418 patients with 797 surgical sites in the growth modification group, wound complications were associated with surgical location (5.2% at distal femur vs. 1.0% at proximal tibia, P =0.002) and implant type (0.5% using transphyseal screw vs. 4.3-10.5% using plates or staples, P =0.011). CONCLUSION: Surgical wound complication was associated with growth modification surgeries using plates or staples at the distal femur. Our results alert orthopaedic surgeons to this minor but unneglectable problem. Transphyseal screws may be the implant of choice for guided growth and epiphysiodesis at the distal femur in older children, considering the lower risks of wound complication. LEVEL OF EVIDENCE: Level III, retrospective comparative study.


Assuntos
Ferida Cirúrgica , Criança , Fêmur/cirurgia , Humanos , Extremidade Inferior , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Tíbia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...