Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(24): 25507-25518, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079354

RESUMO

The commercialization of lithium-sulfur (Li-S) batteries has been hampered by diverse challenges, including the shuttle phenomenon and low electrical/ionic conductivity of lithium sulfide and sulfur. To address these issues, extensive research has been devoted to developing multifunctional interlayers. However, interlayers capable of simultaneously suppressing the polysulfide (PS) shuttle and ensuring stable electrical and ionic conductivity are relatively uncommon. Moreover, the use of thick and heavy interlayers results in an unavoidable decline in the energy density of Li-S batteries. We developed an ultrathin (750 nm), lightweight (0.182 mg cm-2) interlayer that facilitates mixed ionic-electronic conduction using the solution shearing technique. The interlayer, composed of carbon nanotube (CNT)/Nafion/poly-3,4-ethylenedioxythiophene:tetracyanoborate (PEDOT:TCB), effectively suppresses the shuttle phenomenon through the synergistic segregation and adsorption effects on PSs by Nafion and CNT/PEDOT, respectively. Furthermore, the electrical/ionic conductivity of the interlayer can be improved via counterion exchange and homogeneous Li+ ion flux/good wettability from SO3- functional group of Nafion, respectively. Enhanced sulfur utilization and reaction kinetics through polysulfide shuttle inhibition and facilitated electron/ion transfer by interlayer enable a high discharge capacity of 1029 mA h g-1 in the Li-S pouch cell under a high sulfur loading of 5.3 mg cm-2 and low electrolyte/sulfur ratio of 5 µL mg-1.

2.
ACS Appl Mater Interfaces ; 15(22): 26660-26669, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212378

RESUMO

Here, we investigate the nonlinear relationship between the content of solid electrolytes in composite electrodes and the irreversible capacity via the degree of nanoscale uniformity of the surface morphology and chemical composition of the solid electrolyte interphase (SEI) layer. Using electrochemical strain microscopy (ESM) and X-ray photoelectron spectroscopy (XPS), changes of the chemical composition and morphology (Li and F distribution) in SEI layers on the electrodes as a function of solid electrolyte contents are analyzed. As a result, we find that the solid electrolyte content affects the variation of the SEI layer thickness and chemical distributions of Li and F ions in the SEI layer, which, in turn, influence the Coulombic efficiency. This correlation determines the composition of the composite electrode surface that can maximize the physical and chemical uniformity of the solid electrolyte on the electrode, which is a key parameter to increase electrochemical performance in solid-state batteries.

3.
ACS Appl Mater Interfaces ; 15(23): 28064-28072, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37218997

RESUMO

All-solid-state batteries (ASBs) have been identified as a potential next-generation technology for safe energy storage. However, the current pellet form of solid electrolytes (SEs) exhibits low cell-level energy densities and mechanical brittleness, and this has hampered the commercialization of ASBs. In this work, we report on the development of an ultrathin SE membrane that can be reduced to a thickness of 31 µm with minimal thermal shrinkage at 140 °C, while exhibiting robust mechanical properties (tensile strength of 19.6 MPa). Due to its exceptional ionic conductivity of 0.55 mS/cm and the corresponding areal conductance of 84 mS/cm2, the SE membrane-incorporated ASB displays cell-level gravimetric and volumetric energy densities of 127.9 Wh/kgcell and 140.7 Wh/Lcell, respectively. These values represent a 7.6- and 5.7-fold increase over those achieved with conventional SE pellet cells. Our results demonstrate the potential of the developed SE membrane to overcome the critical challenges in the commercialization of ASBs.

4.
ACS Appl Mater Interfaces ; 15(10): 13131-13143, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791219

RESUMO

Problematic issues with electrically inert binders have been less serious in the conventional lithium-ion batteries by virtue of permeable liquid electrolytes (LEs) for ionic connection and/or carbonaceous additives for electronic connection in the electrodes. Contrary to electron-conductive binders used to maximize an active loading level, the development of ion-conductive binders has been lacking owing to the LE-filled electrode configuration. Herein, we represent a tactical strategy for improving the interfacial Li+ conduction in all-solid-state electrolyte-free graphite (EFG) electrodes where the solid electrolytes are entirely excluded, using lithium-substitution-modulated (LSM) binders. Finely tuning a lithium substitution ratio, a conductive LSM-carboxymethyl cellulose (CMC) binder is prepared from a controlled direct Na+/Li+ exchange reaction without a hazardous acid involvement. The EFG electrode employing LSM with a maximum degree of substitution of lithium (DSLi) of ∼68% in our study shows a considerably higher rate capability of 1.05 mA h cm-2 at 1 C and a capacity retention of ∼61.9% after 200 cycles at 0.5 C than those using sodium-CMC (Na-CMC) (0.78 mA h cm-2, ∼49.5%) and LSM with ∼35% lithium substitution (0.93 mA h cm-2, ∼55.4%). More importantly, the correlation between the phase transition near the bottom region of the EFG electrode and the state of charge (SOC) is systematically investigated, clarifying that the improvement of the interfacial conduction is proportional to the DSLi of the CMC binders. Theoretical calculations combined with experimental results further verify that creating the continuous interface through abundant pathways for mobile ions using the Li+-conductive binder is the enhancement mechanism of the interfacial conduction in the EFG electrode, mitigating serious charge transfer resistance.

5.
Adv Mater ; 35(10): e2208999, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527728

RESUMO

High-energy and long cycle lithium-sulfur (Li-S) pouch cells are limited by the insufficient capacities and stabilities of their cathodes under practical electrolyte/sulfur (E/S), electrolyte/capacity (E/C), and negative/positive (N/P) ratios. Herein, an advanced cathode comprising highly active Fe single-atom catalysts (SACs) is reported to form 320.2 W h kg-1 multistacked Li-S pouch cells with total capacity of ≈1 A h level, satisfying low E/S (3.0), E/C (2.8), and N/P (2.3) ratios and high sulfur loadings (8.4 mg cm-2 ). The high-activity Fe SAC is designed by manipulating its local environments using electron-exchangeable binding (EEB) sites. Introducing EEB sites comprising two different types of S species, namely, thiophene-like-S (-S) and oxidized-S (-SO2 ), adjacent to Fe SACs promotes the kinetics of the Li2 S redox reaction by providing additional binding sites and modulating the Fe d-orbital levels via electron exchange with Fe. The -S donates the electrons to the Fe SACs, whereas -SO2 withdraws electrons from the Fe SACs. Thus, the Fe d-orbital energy level can be modulated by the different -SO2 /-S ratios of the EEB site, controlling the electron donating/withdrawing characteristics. This desirable electrocatalysis is maximized by the intimate contact of the Fe SACs with the S species, which are confined together in porous carbon.

6.
ACS Appl Mater Interfaces ; 13(27): 31605-31613, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34192462

RESUMO

Li metal thickness has been considered a key factor in determining the electrochemical performance of Li metal anodes. The use of thin Li metal anodes is a prerequisite for increasing the energy density of Li secondary batteries intended for emerging large-scale electrical applications, such as electric vehicles and energy storage systems. To utilize thin (20 µm thick) Li metal anodes in Li metal secondary batteries, we investigated the synergistic effect of a functional additive (Li nitrate, LiNO3) and a dual-salt electrolyte (DSE) system composed of Li bis(fluorosulfonyl)imide (LiTFSI) and Li bis(oxalate)borate (LiBOB). By controlling the amount of LiNO3 in DSE, we found that DSE containing 0.05 M LiNO3 (DSE-0.05 M LiNO3) significantly improved the electrochemical performance of Li metal anodes. DSE-0.05 M LiNO3 increased the cycling performance by 146.3% [under the conditions of a 1C rate (2.0 mA cm-2), DSE alone maintained 80% of the initial discharge capacity up to the 205th cycle, whereas DSE-0.05 M LiNO3 maintained 80% up to the 300th cycle] and increased the rate capability by 128.2% compared with DSE alone [the rate capability of DSE-0.05 M LiNO3 = 50.4 mAh g-1, and DSE = 39.3 mAh g-1 under 7C rate conditions (14.0 mA cm-2)]. After analyzing the Li metal surface using scanning electron microscopy and X-ray photoelectron spectroscopy, we were able to infer that the stabilized solid electrolyte interphase layer formed by the combination of LiNO3 and the dual salt resulted in a uniform Li deposition during repeated Li plating/stripping processes.

7.
iScience ; 23(11): 101739, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33235982

RESUMO

In contrast to enormous progresses in electrode active materials, little attention has been paid to electrode sheets despite their crucial influence on practical battery performances. Here, as a facile strategy to address this issue, we demonstrate nanofibrous conductive electrode binders based on deoxyribonucleic acid (DNA)-wrapped single-walled carbon nanotubes (SWCNT) (denoted as DNA@SWCNT). DNA@SWCNT binder allows the removal of conventional polymeric binders and carbon powder additives in electrodes. As a proof of concept, high-capacity overlithiated layered oxide (OLO) is chosen as a model electrode active material. Driven by nanofibrous structure and DNA-mediated chemical functionalities, the DNA@SWCNT binder enables improvements in the redox reaction kinetics, adhesion with metallic foil current collectors, and chelation of heavy metal ions dissolved from OLO. The resulting OLO cathode exhibits a fast charging capability (relative capacity ratio after 15 min [versus 10 h] of charging = 83%), long cyclability (capacity retention = 98% after 700 cycles), and thermal stability.

8.
Nanomaterials (Basel) ; 10(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092192

RESUMO

A method of microalgae-templated spray drying to develop hierarchical porous Fe3O4/C composite microspheres as anode materials for Li-ion batteries was developed. During the spray-drying process, individual microalgae serve as building blocks of raspberry-like hollow microspheres via self-assembly. In the present study, microalgae-derived carbon matrices, naturally doped heteroatoms, and hierarchical porous structural features synergistically contributed to the high electrochemical performance of the Fe3O4/C composite microspheres, enabling a discharge capacity of 1375 mA·h·g-1 after 700 cycles at a current density of 1 A/g. Notably, the microalgal frameworks of the Fe3O4/C composite microspheres were maintained over the course of charge/discharge cycling, thus demonstrating the structural stability of the composite microspheres against pulverization. In contrast, the sample fabricated without microalgal templating showed significant capacity drops (up to ~40% of initial capacity) during the early cycles. Clearly, templating of microalgae endows anode materials with superior cycling stability.

9.
Int J Biol Macromol ; 133: 875-880, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029627

RESUMO

Systems for delivering damaged tissue by immobilization of a bioactive substance or a protein drug for rapid recovery of a patient are being studied. To immobilize drugs using natural polymer, photo-immobilization method has been designed. Immobilization through photo-reaction is a new technology that stabilizes drugs or growth factors for sustained release. Introduction of photo-reactive functional groups into biocompatible natural polymers produces materials applicable to the medical field. Since chitosan is a natural polymer with stability and biocompatibility, this study attempts to use chitosan as a mediator of drug delivery. In addition, If the form of the immobilized biomaterial is made into a micro-sized particle, it can be utilized as an injectable material in addition to the stability of the photo-immobilization. In photo-immobilization in particle form, the probability of exposure to the enzyme in the body is lower than if it is injected into the body in the conventional free state. In addition, since it can be freely injected into a desired target site, it can be used for various medical applications. Therefore, it is expected that various effects of growth factors and drugs can be utilized and additional effects can be obtained by photo-immobilization together with various effects.


Assuntos
Azidas/química , Quitosana/química , Portadores de Fármacos/química , Microesferas , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Quitosana/toxicidade , Portadores de Fármacos/toxicidade , Proteínas Imobilizadas/química , Camundongos , Peso Molecular , Células NIH 3T3 , Soroalbumina Bovina/química
10.
Sci Rep ; 9(1): 2464, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792437

RESUMO

Functional separators, which have additional functions apart from the ionic conduction and electronic insulation of conventional separators, are highly in demand to realize the development of advanced lithium ion secondary batteries with high safety, high power density, and so on. Their fabrication is simply performed by additional deposition of diverse functional materials on conventional separators. However, the hydrophobic wetting nature of conventional separators induces the polarity-dependent wetting feature of slurries. Thus, an eco-friendly coating process of water-based slurry that is highly polar is hard to realize, which restricts the use of various functional materials dispersible in the polar solvent. This paper presents a surface modification of conventional separators that uses a solution-based coating of graphene oxide with a hydrophilic group. The simple method enables the large-scale tuning of surface wetting properties by altering the morphology and the surface polarity of conventional separators, without significant degradation of lithium ion transport. On the surface modified separator, superior wetting properties are realized and a functional separator, applicable to lithium metal secondary batteries, is demonstrated as an example. We believe that this simple surface modification using graphene oxide contributes to successful fabrication of various functional separators that are suitable for advanced secondary batteries.

11.
Int J Biol Macromol ; 121: 301-308, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30312696

RESUMO

This study demonstrated the anti-adhesion and wound healing effect of a visible light curable anti-adhesion agent using an alginate derivative modified with a furfuryl moiety. Visible light-curable furfuryl alginate (F-Alg) was prepared in conjugation with alginate and furfurylamine by an amide coupling reaction, and the conjugated F-Alg was characterized by 1H NMR analysis. The cytotoxicity, cell adhesion, and cell permeability of the F-Alg were evaluated for use in anti-adhesion applications. Drug immobilization and protein release were assessed to verify whether the alginate derivatives and drugs were photo-immobilized. In in vivo anti-adhesion testing, the new anti-adhesion agent prepared in this study acted as a physical protective layer by forming a biofilm on the surgical site. Additionally, along with gradual decomposition of the photo-crosslinked alginate derivative, the immobilized drug was released, and additional effects such as accelerated wound healing are expected. Thus, visible light-curable F-Alg has good application potential as an anti-adhesion agent.


Assuntos
Alginatos/química , Alginatos/farmacologia , Furanos/química , Luz , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Camundongos , Células NIH 3T3 , Soroalbumina Bovina/química , Cicatrização/efeitos dos fármacos
12.
Sci Rep ; 8(1): 2514, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410471

RESUMO

One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electro-mechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Li metal. We show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.

13.
Nanoscale ; 10(1): 100-108, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29210423

RESUMO

Transparent conducting electrodes (TCEs) are essential components in various optoelectronic devices. Nanostructured metallic thin film is one of the promising candidates to complement current metal oxide films, such as ITO, where high cost rare earth elements have been a longstanding issue. Herein, we present that multiscale porous metal nanomesh thin films prepared by bimodal self-assembly of block copolymer (BCP)/homopolymer blends may offer a new opportunity for TCE. This hierarchical concurrent self-assembly consists of macrophase separation between BCP and homopolymer as well as microphase separation of BCP, and thus provides a straightforward spontaneous production of a highly porous multiscale pattern over an arbitrary large area. Employing a conventional pattern transfer process, we successfully demonstrated a multiscale highly porous metallic thin film with reasonable optical transparency, electro-conductance, and large-area uniformity, taking advantage of low loss light penetration through microscale pores and significant suppression of light reflection at the nanoporous structures. This well-defined controllable bimodal self-assembly can offer valuable opportunities for many different applications, including optoelectronics, energy harvesting, and membranes.

14.
ChemSusChem ; 10(12): 2605-2611, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28480624

RESUMO

Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm-1 ) and dry-air-stable SEs (Li4 SnS4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO2 ) coated by solidified Li4 SnS4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO2 to aqueous solutions are minimized by using predissolved Li4 SnS4 solution.


Assuntos
Fontes de Energia Elétrica , Fluoretos/química , Lítio/química , Compostos de Estanho/química , Água/química , Química Verde , Soluções
15.
Sci Rep ; 6: 30945, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530802

RESUMO

A new Cu current collector was prepared by introducing a mussel-inspired polydopamine coating onto a Cu foil surface to improve the electrochemical performance of a Si electrode. The polydopamine coating covalently bonded the polymeric binder (with hydroxyl functional groups) via a condensation reaction. The coating improved the adhesion strength between the Si composite electrode and the Cu current collector (245.5 N m(-1), 297.5 N m(-1), and 353.2 N m(-1) for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively). We demonstrate that the detachment between the Si composite electrode and the current collector plays an important role in determining the electrochemical performance of the Si electrode. The cycle life and rate capability of the Si electrode improved when the polydopamine surface-treated Cu current collector was used (963.9 mAh g(-1), 1361.1 mAh g(-1), and 1590.0 mAh g(-1) for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively, at C/2 after 500 cycles).

16.
ChemSusChem ; 9(8): 849-54, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-26990699

RESUMO

We report the fabrication of a carbon-based high energy density Li-ion hybrid electrochemical capacitor (Li-HEC) from low cost and eco-friendly materials. High surface area (2448±20 m(2) g(-1) ) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li-HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre-lithiated prior to the Li-HEC fabrication. The Li-HEC delivers a specific energy of 162.3 Wh kg(-1) and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li-HEC benefits from the tube-like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro- and meso-porous network acts as reservoir for the accommodation of charge carriers.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Fabaceae , Lítio/química , Biomassa , Eletrodos , Propriedades de Superfície
17.
Sci Rep ; 5: 18053, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26666197

RESUMO

Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.

18.
Nano Lett ; 15(5): 3317-23, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25919229

RESUMO

Bulk-type all-solid-state lithium batteries (ASLBs) are considered a promising candidate to outperform the conventional lithium-ion batteries. Unfortunately, the current technology level of ASLBs is in a stage of infancy in terms of cell-based (not electrode-material-based) energy densities and scalable fabrication. Here, we report on the first ever bendable and thin sulfide solid electrolyte films reinforced with a mechanically compliant poly(paraphenylene terephthalamide) nonwoven (NW) scaffold, which enables the fabrication of free-standing and stackable ASLBs with high energy density and high rate capabilities. The ASLB, using a thin (∼70 µm) NW-reinforced SE film, exhibits a 3-fold increase of the cell-energy-density compared to that of a conventional cell without the NW scaffold.

19.
Sci Rep ; 4: 5572, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25001392

RESUMO

The performance of nanocomposite electrodes prepared by controlled ball-milling of TiS2 and a Li2S-P2S5 solid electrolyte (SE) for all-solid-state lithium batteries is investigated, focusing on the evolution of the microstructure. Compared to the manually mixed electrodes, the ball-milled electrodes exhibit abnormally increased first-charge capacities of 416 mA h g(-1) and 837 mA h g(-1) in the voltage ranges 1.5-3.0 V and 1.0-3.0 V, respectively, at 50 mA g(-1) and 30°C. The ball-milled electrodes also show excellent capacity retention of 95% in the 1.5-3.0 V range after 60 cycles as compared to the manually mixed electrodes. More importantly, a variety of characterization techniques show that the origin of the extra Li(+) storage is associated with an amorphous Li-Ti-P-S phase formed during the controlled ball-milling process.

20.
ACS Appl Mater Interfaces ; 6(14): 11544-9, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25020188

RESUMO

We report the fabrication of a flexible and binder-free metal fibril mat-supported Si anode (Si@SFM) by a simple process. The fabricated Si@SFM anode showed a high discharge capacity, ∼3000 mAh g(-1) at a current rate of 300 mA g(-1), and exhibited stable capacity retention, 90% at a 1 C rate (2000 mA g(-1)) after 200 cycles. The rate capability of the electrode was still high even when both the charge and the discharge current rates were markedly increased at the same time (1234 mAh g(-1) for charge-discharge time of ∼12 min). Moreover, owing to its mechanical flexibility, the Si@SFM can be adopted as a key component of flexible lithium-ion batteries (LIBs). After cell packaging, the rechargeable flexible battery under bending stress showed only a little capacity fading (86% of initial capacity) at 1000 mA g(-1) over 150 cycles. These results suggest that the Si@SFM electrode is readily suitable for use in rechargeable flexible LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...