Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599826

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Assuntos
Berberina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudos de Casos e Controles , Coptis chinensis , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rizoma
2.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320719

RESUMO

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Assuntos
Doença de Machado-Joseph , Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Interleucina-6 , Lipopolissacarídeos/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Aging (Albany NY) ; 15(16): 8061-8089, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578928

RESUMO

Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology. In this report, we showed that coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 reduced the expression of major histocompatibility complex-II, NLR family pyrin domain containing (NLRP) 3, caspase-1, inducible nitric oxide synthase, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in α-synuclein-activated mouse BV-2 microglia. Release of pro-inflammatory mediators including nitric oxide, IL-1ß, IL-6 and TNF-α was also mitigated. In BE(2)-M17 cells expressing A53T α-synuclein aggregates, LM-021 and NC009-1 reduced α-synuclein aggregation, neuroinflammation, oxidative stress and apoptosis, and promoted neurite outgrowth. These protective effects were mediated by downregulating NLRP1, IL-1ß and IL-6, and their downstream pathways including nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription (STAT) 1, and Janus kinase 2 (JAK2)/STAT3. The study results indicate LM-021 and NC009-1 as potential new drug candidates for PD.


Assuntos
Chalconas , Doença de Parkinson , Camundongos , Animais , alfa-Sinucleína/metabolismo , Chalconas/farmacologia , Interleucina-6/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Indóis/farmacologia , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cumarínicos/farmacologia , Lipopolissacarídeos/farmacologia
4.
Biomolecules ; 13(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830589

RESUMO

Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity. In this study, eight compounds were evaluated for the potential of inhibiting Tau misfolding in human neuroblastoma SH-SY5Y cells expressing the pro-aggregator Tau folding reporter (ΔK280 TauRD-DsRed). Among them, coumarin derivative ZN-015 and quinoline derivatives VB-030 and VB-037 displayed chemical chaperone activity to reduce ΔK280 TauRD aggregation and promote neurite outgrowth. Studies of TRKB signaling revealed that ZN-015, VB-030 and VB-037 treatments significantly increased phosphorylation of TRKB and downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase 1/2 (ERK) and AKT serine/threonine kinase (AKT), to activate ribosomal S6 kinase (RSK) and cAMP response element-binding protein (CREB). Subsequently, p-CREB enhanced the transcription of pro-survival BDNF and BCL2 apoptosis regulator (BCL2), accompanied with reduced expression of anti-survival BCL2-associated X protein (BAX) in ΔK280 TauRD-DsRed-expressing cells. The neurite outgrowth promotion effect of ZN-015, VB-030 and VB-037 was counteracted by a RNA interference-mediated knockdown of TRKB, suggesting the role of these compounds acting as TRKB agonists. Tryptophan fluorescence quenching analysis showed that ZN-015, VB-030 and VB-037 interacted directly with a Pichia pastoris-expressed TRKB extracellular domain, indirectly supporting the role through TRKB signaling. The results of up-regulation in TRKB signaling open up the therapeutic potentials of ZN-015, VB-030 and VB-037 for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt , Neuroblastoma/metabolismo , Proteínas tau/metabolismo , Receptor trkB/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768965

RESUMO

Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-ß, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP+)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD. In vitro, NC009-1 alleviated MPP+-induced cytotoxicity, reduced NO, IL-1ß, IL-6, and TNF-α production, and suppressed NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in MPP+-activated HMC3 cells. In vivo, NC009-1 ameliorated motor deficits and non-motor depression, increased dopamine and dopamine transporter levels in the striatum, and reduced oxidative stress as well as microglia and astrocyte reactivity in the ventral midbrain of MPTP-treated mice. These protective effects were achieved by down-regulating NLRP3, CASP1, iNOS, IL-1ß, IL-6, and TNF-α, and up-regulating SOD2, NRF2, and NQO1. These results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanism, and indicate NC009-1 as a potential drug candidate for PD treatment.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Neurotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Estresse Oxidativo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos
6.
Biomol Ther (Seoul) ; 31(3): 285-297, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646447

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid ß (Aß), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7 ,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aß folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aß-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.

7.
Biomol Ther (Seoul) ; 31(1): 127-138, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35790892

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3ß from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3ß activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3ß Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3ß kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

8.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361524

RESUMO

Hyperphosphorylation and aggregation of the microtubule binding protein tau is a neuropathological hallmark of Alzheimer's disease/tauopathies. Tau neurotoxicity provokes alterations in brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB)/cAMP-response-element binding protein (CREB) signaling to contribute to neurodegeneration. Compounds activating TRKB may therefore provide beneficial effects in tauopathies. LM-031, a coumarin derivative, has demonstrated the potential to improve BDNF signaling in neuronal cells expressing pro-aggregated ΔK280 tau mutant. In this study, we investigated if LM-031 analogous compounds provide neuroprotection effects through interaction with TRKB in SH-SY5Y cells expressing ΔK280 tauRD-DsRed folding reporter. All four LMDS compounds reduced tau aggregation and reactive oxygen species. Among them, LMDS-1 and -2 reduced caspase-1, caspase-6 and caspase-3 activities and promoted neurite outgrowth, and the effect was significantly reversed by knockdown of TRKB. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in these cells, implying that the neuroprotective effects of LMDS-1/2 are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. Furthermore, LMDS-1/2 demonstrated their ability to quench the intrinsic fluorescence of tryptophan residues within the extracellular domain of TRKB, thereby consolidating their interaction with TRKB. Our results suggest that LMDS-1/2 exert neuroprotection through activating TRKB signaling, and shed light on their potential application in therapeutics of Alzheimer's disease/tauopathies.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Tauopatias , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas tau/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neuroproteção , Doença de Alzheimer/tratamento farmacológico , Cumarínicos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Neuroblastoma/metabolismo , Receptor trkB/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Caspases
9.
Aging (Albany NY) ; 14(18): 7568-7586, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36170028

RESUMO

Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer's disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aß toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aß-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aß-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood-brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aß cells, which may shed light on the potential application in therapeutics of AD.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana/agonistas , Neuroblastoma , Fármacos Neuroprotetores , Receptor trkB/agonistas , Peptídeos beta-Amiloides/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cumarínicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Membranas Artificiais , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Wortmanina
10.
Oxid Med Cell Longev ; 2022: 3652402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160711

RESUMO

Alzheimer's disease (AD), characterized by the abnormal accumulation of ß-amyloid (Aß), is the most prevalent type of dementia, and it is associated with progressive cognitive decline and memory loss. Aß accumulation activates microglia, which secrete proinflammatory factors associated with Aß clearance impairment and cause neurotoxicity, generating a vicious cycle among Aß accumulation, activated microglia, and proinflammatory factors. Blocking this cycle can be a therapeutic strategy for AD. Using Aß-activated HMC3 microglial cells, we observed that isorhamnetin, a main constituent of Oenanthe javanica, reduced the Aß-triggered secretion of interleukin- (IL-) 6 and downregulated the expression levels of the microglial activation markers ionized calcium binding adaptor molecule 1 (IBA1) and CD11b and the inflammatory marker nuclear factor-κB (NF-κB). Treatment of the SH-SY5Y-derived neuronal cells with the Aß-activated HMC3-conditioned medium (HMC3-conditioned medium) or IL-6 increased reactive oxygen species production, upregulated cleaved caspase 3 expression, and reduced neurite outgrowth, whereas treatment with isorhamnetin counteracted these neurodegenerative presentations. In the SH-SY5Y-derived neuronal cells, IL-6 upregulated the phosphorylation of tyrosine kinase 2 (TYK2) and signal transducer and activator of transcription 1 (STAT1), whereas isorhamnetin normalized this abnormal phosphorylation. Overexpression of TYK2 attenuated the neuroprotective effect of isorhamnetin on IL-6-induced neurotoxicity. Our findings demonstrate that isorhamnetin exerts its neuroprotective effect by mediating the neuroinflammatory IL-6/TYK2 signaling pathway, suggesting its potential for treating AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Interleucina-6/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/metabolismo , Quercetina/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/metabolismo , TYK2 Quinase/metabolismo , TYK2 Quinase/farmacologia , TYK2 Quinase/uso terapêutico
11.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831318

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease presenting with progressive memory and cognitive impairments. One of the pathogenic mechanisms of AD is attributed to the aggregation of misfolded amyloid ß (Aß), which induces neurotoxicity by reducing the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TRKB) and increasing oxidative stress, caspase-1, and acetylcholinesterase (AChE) activities. Here, we have found the potential of two novel synthetic coumarin derivatives, ZN014 and ZN015, for the inhibition of Aß and neuroprotection in SH-SY5Y neuroblastoma cell models for AD. In SH-SY5Y cells expressing the GFP-tagged Aß-folding reporter, both ZN compounds reduced Aß aggregation, oxidative stress, activities of caspase-1 and AChE, as well as increased neurite outgrowth. By activating TRKB-mediated extracellular signal-regulated kinase (ERK) and AKT serine/threonine kinase 1 (AKT) signaling, these two ZN compounds also upregulated the cAMP-response-element binding protein (CREB) and its downstream BDNF and anti-apoptotic B-cell lymphoma 2 (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of ZN014 and ZN015. A parallel artificial membrane permeability assay showed that ZN014 and ZN015 could be characterized as blood-brain barrier permeable. Our results suggest ZN014 and ZN015 as novel therapeutic candidates for AD and demonstrate that ZN014 and ZN015 reduce Aß neurotoxicity via pleiotropic mechanisms.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Cumarínicos/farmacologia , Proteínas de Fluorescência Verde/toxicidade , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Disponibilidade Biológica , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cumarínicos/química , Técnicas de Silenciamento de Genes , Humanos , Crescimento Neuronal/efeitos dos fármacos , Agregados Proteicos , Espécies Reativas de Oxigênio/metabolismo , Receptor trkB/metabolismo
12.
Oxid Med Cell Longev ; 2021: 3058861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812274

RESUMO

Abnormal accumulations of misfolded Aß and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aß-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aß-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aß and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Chalconas/química , Cumarínicos/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fármacos Neuroprotetores/química , Proteínas tau/genética
13.
Aging (Albany NY) ; 13(11): 15620-15637, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106880

RESUMO

Amyloid ß (Aß) plays a major role in the neurodegeneration of Alzheimer's disease (AD). The accumulation of misfolded Aß causes oxidative stress and inflammatory damage leading to apoptotic cell death. Traditional Chinese herbal medicine (CHM) has been widely used in treating neurodegenerative diseases by reducing oxidative stress and neuroinflammation. We examined the neuroprotective effect of formulated CHM Shaoyao Gancao Tang (SG-Tang, made of Paeonia lactiflora and Glycyrrhiza uralensis at 1:1 ratio) in AD cell and mouse models. In Aß-GFP SH-SY5Y cells, SG-Tang reduced Aß aggregation and reactive oxygen species (ROS) production, as well as improved neurite outgrowth. When the Aß-GFP-expressing cells were stimulated with conditioned medium from interferon (IFN)-γ-activated HMC3 microglia, SG-Tang suppressed expressions of inducible nitric oxide synthase (iNOS), NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6, attenuated caspase-1 activity and ROS production, and promoted neurite outgrowth. In streptozocin-induced hyperglycemic APP/PS1/Tau triple transgenic (3×Tg-AD) mice, SG-Tang also reduced expressions of NLRP1, NLRP3, Aß and Tau in hippocampus and cortex, as well as improved working and spatial memories in Y maze and Morris water maze. Collectively, our results demonstrate the potential of SG-Tang in treating AD by moderating neuroinflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cognição , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroproteção , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Cognição/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interferon gama/metabolismo , Memória/efeitos dos fármacos , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Crescimento Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Agregados Proteicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Proteínas tau/metabolismo
14.
J Agric Food Chem ; 69(8): 2422-2437, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617267

RESUMO

Lactulose, as a prebiotic, can be utilized by human gut microbiota and stimulate their growth. Although microbiota modulation has become an emerging approach to manage many diseases and can be achieved by the administration of prebiotics, fewer investigations have been carried out on the therapeutic mechanism of lactulose. Two trehalose analogs, lactulose and melibiose, were identified as having a neuroprotective effect in polyglutamine and Parkinson disease models. In this study, we examined lactulose and melibiose in a mouse primary hippocampal neuronal culture under the toxicity of oligomeric Aß25-35. Lactulose was further tested in vivo because its effective concentration is lower than that of melibiose. Lactulose and trehalose were applied individually to mice before a bilateral intrahippocampal CA1 injection of oligomeric Aß25-35. The administration of lactulose and trehalose attenuated the short-term memory and the learning retrieval of Alzheimer's disease (AD) mice. From a pathological analysis, we found that the pretreatment of lactulose and trehalose decreased neuroinflammation and increased the levels of the autophagic pathways. These results suggest that the neuroprotective effects of both lactulose and trehalose are achieved through anti-inflammation and autophagy. In addition, lactulose was better than trehalose in the enhancement of the synaptic protein expression level in AD mice. Therefore, lactulose could potentially be developed into a preventive and/or therapeutic disaccharide for AD.


Assuntos
Doença de Alzheimer , Autofagia Mediada por Chaperonas , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Animais , Autofagia , Cognição , Modelos Animais de Doenças , Lactulose , Macroautofagia , Camundongos , Fármacos Neuroprotetores/farmacologia , Prebióticos
15.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494411

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons and the presence of α-synuclein-containing Lewy bodies. The unstructured α-synuclein forms insoluble fibrils and aggregates that result in increased reactive oxygen species (ROS) and cellular toxicity in PD. Neuroinflammation engaged by microglia actively contributes to the pathogenesis of PD. In this study, we showed that VB-037 (a quinoline compound), glycyrrhetic acid (a pentacyclic triterpenoid), Glycyrrhiza inflata (G. inflata, a Chinese herbal medicine), and Shaoyao Gancao Tang (SG-Tang, a formulated Chinese medicine) suppressed the nitric oxide (NO) production and interleukin (IL)-1ß maturation in α-synuclein-stimulated BV-2 cells. Mouse inflammation antibody array further revealed increased IL-1α, IL-1ß, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in α-synuclein-inflamed BV-2 cells and compound pretreatment effectively reduced the expression and release of these pro-inflammatory mediators. The test compounds and herbal medicines further reduced α-synuclein aggregation and associated oxidative stress, and protected cells against α-synuclein-induced neurotoxicity by downregulating NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), caspase 1, IL-1ß, IL-6, and associated nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription 1 (STAT1) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways in dopaminergic neurons derived from α-synuclein-expressing SH-SY5Y cells. Our findings indicate the potential of VB-037, glycyrrhetic acid, G. inflata, and SG-Tang through mitigating α-synuclein-stimulated neuroinflammation in PD, as new drug candidates for PD treatment.


Assuntos
Suscetibilidade a Doenças , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Proteínas de Bactérias/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Genes Reporter , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Fator de Transcrição STAT3/metabolismo , alfa-Sinucleína/metabolismo
16.
Front Aging Neurosci ; 13: 758895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975454

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.

17.
J Formos Med Assoc ; 120(1 Pt 2): 501-507, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32620460

RESUMO

BACKGROUND: Oxidative stress could participate in the pathogenesis of Parkinson's disease (PD). However, the role of genetic variation of superoxide dismutase 2 (SOD2), an important regulator against oxidative stress, in PD remains to be elucidated. METHODS: We screened SOD2 gene variation by sequencing cDNA from 72 patients with early onset PD. A cohort of PD (n = 609) and ethnically matched controls (n = 681) were further examined for the identified sequence variant by PCR and NaeI restriction analysis. RESULTS: Only a reported c.47T>C polymorphism (rs4880, SOD2 p.V16A) was found by cDNA sequencing. Case-control study of c.47T>C revealed that genotype and allele frequencies were in Hardy-Weinberg equilibrium in both patients and healthy controls. In a recessive model, those with CC genotype had a 2.61-fold increased risk of PD (95% CI: 1.08-6.30, P = 0.03) compared to subjects with TT and TC genotypes. Significant association between CC genotype and PD in non-smokers was also observed after stratification according to the history of smoking (3.54-fold increased risk of PD, 95% CI: 1.17-10.72, P = 0.02). Meta-analysis by combining studies of Chinese in China, Singapore, and Taiwan (total 2302 cases and 2029 controls) consistently showed CC genotype with increased risk of PD (OR = 1.77, 95% CI: 1.15-2.71, P = 0.01). CONCLUSION: Our findings demonstrate that SOD2 p.V16A may play a role in the susceptibility of PD in Han Chinese.


Assuntos
Doença de Parkinson , Superóxido Dismutase/genética , Povo Asiático/genética , Estudos de Casos e Controles , China , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Taiwan
18.
Aging (Albany NY) ; 12(23): 23619-23646, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33196459

RESUMO

Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are caused by mutant genes with expanded CAG repeats encoding polyQ tracts. The misfolding and aggregation of polyQ proteins result in increased reactive oxygen species (ROS) and cellular toxicity. Inflammation is a common manifestation of oxidative stress and inflammatory process further reduces cellular antioxidant capacity. Increase of activated microglia in the pons of SCA type 3 (SCA3) patients suggests the involvement of neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of indole compound NC009-1, 4-aminophenol-arachidonic acid derivative AM404, quinoline compound VB-037 and chalcone-coumarin derivative LM-031 using human HMC3 microglia and SCA3 ATXN3/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing NO, IL-1ß, TNF-α and IL-6 production and CD68 expression of IFN-γ-activated HMC3 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP SH-SY5Y cells inflamed with IFN-γ-primed HMC3 conditioned medium, treatment with the tested compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced polyQ aggregation and ROS and/or promoted neurite outgrowth. Examination of IL-1ß- and TNF-α-mediated signaling pathways revealed that the tested compounds decreased IκBα/P65, JNK/JUN and/or P38/STAT1 signaling. The study results suggest the potential of NC009-1, AM404, VB-037 and LM-031 in treating SCA3 and probable other polyQ diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/farmacologia , Cumarínicos/farmacologia , Indóis/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Quinolinas/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Brain Sci ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120894

RESUMO

Sequence variants in vacuolar protein sorting 35 (VPS35) have been reported to be associated with Parkinson's disease (PD). To investigate if the genetic variants in VPS35 contribute to Taiwanese PD, VPS35 cDNA fragments from 62 patients with PD were sequenced. A cohort of PD (n = 560) and ethnically matched controls (n = 506) were further examined for the identified mutation. The effects of the mutation on cation-independent mannose-6-phosphate receptor (CI-MPR) sorting and mitochondrial morphology were further examined in 293T cells expressing the mutant VPS35. Here, a novel heterozygous A320V in the VPS35 gene was identified in two late-onset PD (LOPD) patients, which was absent in 506 normal controls. Expression of the A320V mutant in 293T cells demonstrated increased colocalization of VPS35 with CI-MPR and decreased CI-MPR and lysosomal-associated membrane protein 2 (LAMP2) levels. Decreased CI-MPR manifested in missorting of cathepsin D and decreased proteolysis of α-synuclein. A320V mutation also increased mitochondrial E3 ubiquitin protein ligase 1 (MUL1) and thus led to mitofusin 2 (MFN2) degradation. The results suggest that the expression of VPS35 A320V leads to disrupted CI-MPR sorting and impaired mitochondrial morphology, which may partly explain its action in PD.

20.
Front Aging Neurosci ; 12: 226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848705

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease characterized by the progressive loss of dopaminergic (DAergic) neurons in the ventral brain. A disaccharide trehalose has demonstrated the potential to mitigate the DAergic loss in disease models for PD. However, trehalose is rapidly hydrolyzed into glucose by trehalase in the intestine, limiting its potential for clinical practice. Here, we investigated the neuroprotective potential of two trehalase-indigestible analogs, lactulose and melibiose, in sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treatment with MPTP generated significant motor deficits, inhibited dopamine levels, and down-regulated dopamine transporter (DAT) in the striatum. Expression levels of genes involved in anti-oxidative stress pathways, including superoxide dismutase 2 (SOD2), nuclear factor erythroid 2-related factor 2 (NRF2), and NAD(P)H dehydrogenase (NQO1) were also down-regulated. Meanwhile, expression of the oxidative stress marker 4-hydroxynonenal (4-HNE) was up-regulated along with increased microglia and astrocyte reactivity in the ventral midbrain following MPTP treatment. MPTP also reduced the activity of autophagy, evaluated by the autophagosomal marker microtubule-associated protein 1 light chain 3 (LC3)-II. Lactulose and melibiose significantly rescued motor deficits, increased dopamine in the striatum, reduced microglia and astrocyte reactivity as well as decreased levels of 4-HNE. Furthermore, lactulose and melibiose up-regulated SOD2, NRF2, and NQO1 levels, as well as enhanced the LC3-II/LC3-I ratio in the ventral midbrain with MPTP treatment. Our findings indicate the potential of lactulose and melibiose to protect DAergic neurons in PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...