Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(1): 1901-1911, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914605

RESUMO

Human pancreatic islets engrafted into immunodeficient mice serve as an important model for in vivo human diabetes studies. Following engraftment, islet function can be monitored in vivo by measuring circulating glucose and human insulin; however, it will be important to recover viable cells for more complex graft analyses. Moreover, RNA analyses of dissected grafts have not distinguished which hormone-specific cell types contribute to gene expression. We developed a method for recovering live cells suitable for fluorescence-activated cell sorting from human islets engrafted in mice. Although yields of recovered islet cells were relatively low, the ratios of bulk-sorted ß, α, and δ cells and their respective hormone-specific RNA-Seq transcriptomes are comparable pretransplant and posttransplant, suggesting that the cellular characteristics of islet grafts posttransplant closely mirror the original donor islets. Single-cell RNA-Seq transcriptome analysis confirms the presence of appropriate ß, α, and δ cell subsets. In addition, ex vivo perifusion of recovered human islet grafts demonstrated glucose-stimulated insulin secretion. Viable cells suitable for patch-clamp analysis were recovered from transplanted human embryonic stem cell-derived ß cells. Together, our functional and hormone-specific transcriptome analyses document the broad applicability of this system for longitudinal examination of human islet cells undergoing developmental/metabolic/pharmacogenetic manipulation in vivo and may facilitate the discovery of treatments for diabetes.


Assuntos
Células Endócrinas/fisiologia , Ilhotas Pancreáticas/fisiologia , Transcriptoma/fisiologia , Adulto , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Células Endócrinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Sobrevivência de Enxerto/fisiologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Camundongos , Transplante Heterólogo/métodos , Adulto Jovem
2.
Diabetes Metab Syndr Obes ; 8: 387-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26316789

RESUMO

OBJECTIVE: Glucagon-like peptide-1 induces glucose-dependent insulin secretion and, in rodents, increases proliferation and survival of pancreatic beta cells. To investigate the effects on human beta cells, we used immunodeficient mice transplanted with human islets. The goal was to determine whether lixisenatide, a glucagon-like peptide-1 receptor agonist, improves human islet function and survival in vivo. METHODS: Five independent transplant studies were conducted with human islets from five individual donors. Diabetic human islet-engrafted immunodeficient mice were treated with lixisenatide (50, 150, and 500 µg/kg) or vehicle. Islet function was determined by blood glucose, plasma human insulin/C-peptide, and glucose tolerance tests. Grafts were analyzed for total beta- and alpha-cell number, percent proliferation, and levels of apoptosis. RESULTS: Diabetic mice transplanted with marginal human islet mass and treated with lixisenatide were restored to euglycemia more rapidly than vehicle-treated mice. Glucose tolerance tests, human plasma insulin, and glucose-stimulation indices of lixisenatide-treated mice were significantly improved compared to vehicle-treated mice. The percentages of proliferating or apoptotic beta cells at graft recovery were not different between lixisenatide-treated and vehicle-treated mice. Nevertheless, in one experiment we found a significant twofold to threefold increase in human beta-cell numbers in lixisenatide-treated compared to vehicle-treated mice. CONCLUSION: Diabetic human islet-engrafted immunodeficient mice treated with lixisenatide show improved restoration of normoglycemia, human plasma insulin, and glucose tolerance compared to vehicle-treated mice engrafted with the same donor islets. Because the proliferative capacity of human beta cells is limited, improved beta-cell survival coupled with enhanced beta-cell function following lixisenatide treatment may provide the greatest benefit for diabetic patients with reduced functional islet mass.

3.
Diabetes Metab Syndr Obes ; 6: 493-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376359

RESUMO

PURPOSE: Dipeptidyl-peptidase-4 (DPP-4) inhibitors are known to increase insulin secretion and beta cell proliferation in rodents. To investigate the effects on human beta cells in vivo, we utilize immunodeficient mice transplanted with human islets. The study goal was to determine the efficacy of alogliptin, a DPP-4 inhibitor, to enhance human beta cell function and proliferation in an in vivo context using diabetic immunodeficient mice engrafted with human pancreatic islets. METHODS: Streptozotocin-induced diabetic NOD-scid IL2rγ(null) (NSG) mice were transplanted with adult human islets in three separate trials. Transplanted mice were treated daily by gavage with alogliptin (30 mg/kg/day) or vehicle control. Islet graft function was compared using glucose tolerance tests and non-fasting plasma levels of human insulin and C-peptide; beta cell proliferation was determined by bromodeoxyuridine (BrdU) incorporation. RESULTS: Glucose tolerance tests were significantly improved by alogliptin treatment for mice transplanted with islets from two of the three human islet donors. Islet-engrafted mice treated with alogliptin also had significantly higher plasma levels of human insulin and C-peptide compared to vehicle controls. The percentage of insulin+BrdU+ cells in human islet grafts from alogliptin-treated mice was approximately 10-fold more than from vehicle control mice, consistent with a significant increase in human beta cell proliferation. CONCLUSION: Human islet-engrafted immunodeficient mice treated with alogliptin show improved human insulin secretion and beta cell proliferation compared to control mice engrafted with the same donor islets. Immunodeficient mice transplanted with human islets provide a useful model to interrogate potential therapies to improve human islet function and survival in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...