Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(47): 53111-53119, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395383

RESUMO

This work studied a series of infrared detectors comprised of organic bulk heterojunctions to explain the origin of their broadband spectral response from the visible to the infrared spanning 1 to 8 µm and the transition from photonic to bolometric operation. Through comparisons of the detector current and the sub-bandgap density of states, the mid- and long-wave infrared response was attributed to charge trap-and-release processes that impact thermal charge generation and the activation energy of charge mobility. We further demonstrate how the sub-bandgap characteristics, mobility activation energy, and effective bandgap are key design parameters for controlling the device temperature coefficient of resistance, which reached up to -7%/K, better than other thin-film materials such as amorphous silicon and vanadium oxide.

3.
ACS Appl Mater Interfaces ; 12(46): 51688-51698, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164496

RESUMO

Stacked structures employing wavelength-selective organic photodiodes (OPDs) have been studied as promising alternatives to the conventional Si-based image sensors because of their color constancy. Herein, novel donor (D)-π-acceptor (A) molecules are designed, synthesized, and characterized as green-light-selective absorbers for application in organic-on-Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensors. The p-type molecules, combined with two fused-type heterocyclic donors and an electron-accepting unit, exhibit cyanine-like properties that are characterized by intense and sharp absorption. This molecular design leads to improved absorption properties, thermal stability, and higher photoelectric conversion compared to those of a molecular design based on a nonfused ring. A maximum external quantum efficiency of 66% (λmax = 550 nm) and high specific detectivity (D*) of 8 × 1013 cm Hz1/2/W are achieved in an OPD consisting of a bulk heterojunction blend with two transparent electrodes on both sides. Finally, the green-light-detection capability of the narrow-band green-selective OPD is demonstrated by the optical simulation of an organic-on-Si hybrid, stacked-type, full-color photodetector comprising the green-light-selective OPD and a bottom Si photodiode with only blue and red color filters. Based on this molecular design, further optimization of the OPDs can allow the development of various optoelectronic sensors including 3D-stacked image sensors with enhanced sensitivities to replace the conventional Si-based CMOS image sensors.

4.
Opt Express ; 27(18): 25410-25419, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510413

RESUMO

In this work, organic photodiodes (OPDs) based on two newly synthesized p-type dipolar small molecules are reported for application to green-light-selective OPDs. In order to reduce the blue-color absorption induced by the use of C60 as the n-type material in a bulk heterojunction (BHJ), the electron donor:electron acceptor composition ratio is tuned in the BHJ. With this light manipulation approach, the blue-wavelength external quantum efficiency (EQE) is minimized to 18% after reducing the C60 concentration in the center part of the BHJ. The two p-type molecules get a cyanine-like character with intense and sharp absorption in the green color by adjusting the strength of their donating and accepting parts and by choosing a selenophene unit as a π-linker. When combined to C60, the green-wavelength EQE reaches 70% in a complete device composed of two transparent electrodes. Finally, the optical simulation shows the good color-balance performance of hybrid full-color image sensor without an additional filter by using the developed green OPD as the top-layer in stacked device architecture.

5.
ACS Appl Mater Interfaces ; 8(39): 26143-26151, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27618933

RESUMO

There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

6.
Sci Rep ; 5: 7708, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25578322

RESUMO

Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

7.
ACS Appl Mater Interfaces ; 5(24): 13089-95, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24274372

RESUMO

Green-sensitive organic photodetectors (OPDs) with high sensitivity and spectral selectivity using boron subphthalocyanine chloride (SubPc) derivatives are reported. The OPDs composed of SubPc and dicyanovinyl terthiophene derivative (DCV3T) demonstrated the highest green-sensitivity with maximum external quantum efficiency (EQE) of 62.6 % at an applied voltage of -5 V, but wide full-width-at-half-maximum (FWHM) of 211 nm. The optimized performance considering spectral selectivity was achieved from the composition of N,N-dimethyl quinacridone (DMQA) and SubPc showing the high specific detectivity (D*) of 2.34 × 10(12) cm Hz(1/2)/W, the EQE value of 60.1% at -5 V, and narrow FWHM of 131 nm. In spite of the sharp absorption property of SubPc with the maximum wavelength (λmax) at 586 nm, the EQE spectrum showed favorable green-sensitivity characterized by smooth waveform with λmax at 560 nm, which is induced from the high reflectance of SubPc centered at 605 nm. The photoresponsivity of the OPD devices was found to be consistent with their absorptance. Optimized DMQA/SubPc device showed the lowest value of blue crosstalk (0.42) and moderate red crosstalk (0.37), suggesting its promising application as a green-sensitive OPD.

11.
Opt Express ; 18(16): 16715-21, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20721061

RESUMO

We presented an approach to estimate the emission zone (EZ) positions in high efficiency phosphorescent OLEDs with a thin emitting layer. Two devices with different distances between the emitting layer and the cathode (i.e. they are optically different), but exhibiting same current density-voltage characteristics (i.e. they are electrically the same) were used for this purpose. Mean EZ positions in the OLEDs were extracted from the comparison of the experimental luminous intensity ratio vs. the current density with the calculated intensity ratio vs. the EZ position. The validity of the approach was confirmed by the agreement between calculated and experimental spectral changes.


Assuntos
Eletrodos , Luz , Iluminação/instrumentação , Semicondutores , Desenho de Equipamento , Reprodutibilidade dos Testes
12.
Nano Lett ; 7(1): 39-44, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17212437

RESUMO

GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.


Assuntos
Arsenicais/química , Gálio/química , Nanofios , Silício/química , Cristalografia por Raios X , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...