Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(23): 4585-4599, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815709

RESUMO

A cationic leak current known as an "omega current" may arise from mutations of the first charged residue in the S4 of the voltage sensor domains of sodium and potassium voltage-gated channels. The voltage-sensing domains (VSDs) in these mutated channels act as pores allowing nonspecific passage of cations, such as Li+, K+, Cs+, and guanidinium. Interestingly, no omega currents have been previously detected in the nonswapped voltage-gated potassium channels such as the human-ether-a-go-go-related (hERG1), hyperpolarization-activated cyclic nucleotide-gated, and ether-a-go-go channels. In this work, we discovered a novel omega current by mutating the first charged residue of the S4 of the hERG1, K525 to serine. To characterize this omega current, we used various probes, including the hERG1 pore domain blocker, dofetilide, to show that the omega current does not require cation flux via the canonical pore domain. In addition, the omega flux does not cross the conventional selectivity filter. We also show that the mutated channel (K525S hERG1) conducts guanidinium. These data are indicative of the formation of an omega current channel within the VSD. Using molecular dynamics simulations with replica-exchange umbrella sampling simulations of the wild-type hERG1 and the K525S hERG1, we explored the molecular underpinnings governing the cation flow in the VSD of the mutant. We also show that the wild-type hERG1 may form water crevices supported by the biophysical surface accessibility data. Overall, our multidisciplinary study demonstrates that the VSD of hERG1 may act as a cation-selective channel wherein a mutation of the first charged residue in the S4 generates an omega current. Our simulation uncovers the atomistic underpinning of this mechanism.


Assuntos
Canal de Potássio ERG1 , Humanos , Cátions , Simulação de Dinâmica Molecular , Mutação , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética
2.
Genome Instab Dis ; 2(4): 195-210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723130

RESUMO

DNA-dependent protein kinase catalytic subunit DNA-PKcs/PRKDC is the largest serine/threonine protein kinase of the phosphatidyl inositol 3-kinase-like protein kinase (PIKK) family and is the most highly expressed PIKK in human cells. With its DNA-binding partner Ku70/80, DNA-PKcs is required for regulated and efficient repair of ionizing radiation-induced DNA double-strand breaks via the non-homologous end joining (NHEJ) pathway. Loss of DNA-PKcs or other NHEJ factors leads to radiation sensitivity and unrepaired DNA double-strand breaks (DSBs), as well as defects in V(D)J recombination and immune defects. In this review, we highlight the contributions of the late Dr. Carl W. Anderson to the discovery and early characterization of DNA-PK. We furthermore build upon his foundational work to provide recent insights into the structure of NHEJ synaptic complexes, an evolutionarily conserved and functionally important YRPD motif, and the role of DNA-PKcs and its phosphorylation in NHEJ. The combined results identify DNA-PKcs as a master regulator that is activated by its detection of two double-strand DNA ends for a cascade of phosphorylation events that provide specificity and efficiency in assembling the synaptic complex for NHEJ.

3.
Nat Commun ; 12(1): 1409, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658490

RESUMO

The lipid regulation of mammalian ion channel function has emerged as a fundamental mechanism in the control of electrical signalling and transport specificity in various cell types. In this work, we combine molecular dynamics simulations, mutagenesis, and electrophysiology to provide mechanistic insights into how lipophilic molecules (ceramide-sphingolipid probe) alter gating kinetics and K+ currents of hERG1. We show that the sphingolipid probe induced a significant left shift of activation voltage, faster deactivation rates, and current blockade comparable to traditional hERG1 blockers. Microseconds-long MD simulations followed by experimental mutagenesis elucidated ceramide specific binding locations at the interface between the pore and voltage sensing domains. This region constitutes a unique crevice present in mammalian channels with a non-swapped topology. The combined experimental and simulation data provide evidence for ceramide-induced allosteric modulation of the channel by a conformational selection mechanism.


Assuntos
Ceramidas/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ceramidas/química , Ceramidas/farmacologia , Eletrofisiologia/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
4.
Prog Biophys Mol Biol ; 163: 87-108, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33035590

RESUMO

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key member of the phosphatidylinositol-3 kinase-like (PIKK) family of protein kinases with critical roles in DNA-double strand break repair, transcription, metastasis, mitosis, RNA processing, and innate and adaptive immunity. The absence of DNA-PKcs from many model organisms has led to the assumption that DNA-PKcs is a vertebrate-specific PIKK. Here, we find that DNA-PKcs is widely distributed in invertebrates, fungi, plants, and protists, and that threonines 2609, 2638, and 2647 of the ABCDE cluster of phosphorylation sites are highly conserved amongst most Eukaryotes. Furthermore, we identify highly conserved amino acid sequence motifs and domains that are characteristic of DNA-PKcs relative to other PIKKs. These include residues in the Forehead domain and a novel motif we have termed YRPD, located in an α helix C-terminal to the ABCDE phosphorylation site loop. Combining sequence with biochemistry plus structural data on human DNA-PKcs unveils conserved sequence and conformational features with functional insights and implications. The defined generally progressive DNA-PKcs sequence diversification uncovers conserved functionality supported by Evolutionary Trace analysis, suggesting that for many organisms both functional sites and evolutionary pressures remain identical due to fundamental cell biology. The mining of cancer genomic data and germline mutations causing human inherited disease reveal that robust DNA-PKcs activity in tumors is detrimental to patient survival, whereas germline mutations compromising function are linked to severe immunodeficiency and neuronal degeneration. We anticipate that these collective results will enable ongoing DNA-PKcs functional analyses with biological and medical implications.


Assuntos
Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Filogenia
5.
Front Pharmacol ; 11: 914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694995

RESUMO

Human-ether-a-go-go-related channel (hERG1) is the pore-forming domain of the delayed rectifier K+ channel in the heart which underlies the IKr current. The channel has been extensively studied due to its propensity to bind chemically diverse group of drugs. The subsequent hERG1 block can lead to a prolongation of the QT interval potentially leading to an abnormal cardiac electrical activity. The recently solved cryo-EM structure featured a striking non-swapped topology of the Voltage-Sensor Domain (VSD) which is packed against the pore-domain as well as a small and hydrophobic intra-cavity space. The small size and hydrophobicity of the cavity was unexpected and challenges the already-established hypothesis of drugs binding to the wide cavity. Recently, we showed that an amphipathic drug, ivabradine, may favorably bind the channel from the lipid-facing surface and we discovered a mutant (M651T) on the lipid facing domain between the VSD and the PD which inhibited the blocking capacity of the drug. Using multi-microseconds Molecular Dynamics (MD) simulations of wild-type and M651T mutant hERG1, we suggested the block of the channel through the lipid mediated pathway, the opening of which is facilitated by the flexible phenylalanine ring (F656). In this study, we characterize the dynamic interaction of the methionine-aromatic cassette in the S5-S6 helices by combining data from electrophysiological experiments with MD simulations and molecular docking to elucidate the complex allosteric coupling between drug binding to lipid-facing and intra-cavity sites and aromatic cassette dynamics. We investigated two well-established hERG1 blockers (ivabradine and dofetilide) for M651 sensitivity through electrophysiology and mutagenesis techniques. Our electrophysiology data reveal insensitivity of dofetilide to the mutations at site M651 on the lipid facing side of the channel, mirroring our results obtained from docking experiments. Moreover, we show that the dofetilide-induced block of hERG1 occurs through the intracellular space, whereas little to no block of ivabradine is observed during the intracellular application of the drug. The dynamic conformational rearrangement of the F656 appears to regulate the translocation of ivabradine into the central cavity. M651T mutation appears to disrupt this entry pathway by altering the molecular conformation of F656.

6.
Mol Pharmacol ; 96(2): 259-271, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182542

RESUMO

Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ivabradina/farmacologia , Lipídeos de Membrana/metabolismo , Sítios de Ligação , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Ivabradina/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fenetilaminas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Sulfonamidas/farmacologia
7.
Sci Rep ; 6: 32536, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731415

RESUMO

Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide's mode of action.


Assuntos
Proteínas de Ligação a DNA/química , Canal de Potássio ERG1/química , Canais de Potássio Éter-A-Go-Go/química , Fenetilaminas/química , Sulfonamidas/química , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Canal de Potássio ERG1/genética , Eletrofisiologia , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Concentração de Íons de Hidrogênio , Mutação , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Conformação Proteica
9.
J Mol Cell Cardiol ; 85: 71-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986146

RESUMO

In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance.


Assuntos
Benzazepinas/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação , Animais , Benzazepinas/química , Sítios de Ligação , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Humanos , Concentração Inibidora 50 , Ivabradina , Bicamadas Lipídicas/química , Camundongos , Simulação de Acoplamento Molecular , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Biophys J ; 108(6): 1400-1413, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809253

RESUMO

Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (-34 ± 4 mV) is similar to wild-type (WT) (-37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (-131 ± 4 mV for K525C and -120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.


Assuntos
Cresóis/metabolismo , Cresóis/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Fluorometria , Humanos , Potenciais da Membrana/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Oócitos , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Transfecção , Xenopus laevis
11.
Circ Arrhythm Electrophysiol ; 8(2): 420-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648353

RESUMO

BACKGROUND: N629D KCNH2 is a human missense long-QT2 mutation. Previously, we reported that the N629D/N629D mutation embryos disrupted cardiac looping, right ventricle development, and ablated IKr activity at E9.5. The present study evaluates the role of KCNH2 in vasculogenesis. METHODS AND RESULTS: N629D/N629D yolk sac vessels and aorta consist of sinusoids without normal arborization. Isolated E9.5 +/+ first branchial arches showed normal outgrowth of mouse ERG-positive/α-smooth muscle actin coimmunolocalized cells; however, outgrowth was grossly reduced in N629D/N629D. N629D/N629D aortas showed fewer α-smooth muscle actin positive cells that were not coimmunolocalized with mouse ERG cells. Transforming growth factor-ß treatment of isolated N629D/N629D embryoid bodies partially rescued this phenotype. Cultured N629D/N629D embryos recapitulate the same cardiovascular phenotypes as seen in vivo. Transforming growth factor-ß treatment significantly rescued these embryonic phenotypes. Both in vivo and in vitro, dofetilide treatment, over a narrow window of time, entirely recapitulated the N629D/N629D fetal phenotypes. Exogenous transforming growth factor-ß treatment also rescued the dofetilide-induced phenotype toward normal. CONCLUSIONS: Loss of function of KCNH2 mutations results in defects in cardiogenesis and vasculogenesis. Because many medications inadvertently block the KCNH2 potassium current, these novel findings seem to have clinical relevance.


Assuntos
Anormalidades Induzidas por Medicamentos/prevenção & controle , Células-Tronco Embrionárias/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Morte Fetal , Cardiopatias Congênitas/prevenção & controle , Mutação de Sentido Incorreto , Neovascularização Fisiológica/efeitos dos fármacos , Fenetilaminas/toxicidade , Bloqueadores dos Canais de Potássio/toxicidade , Sulfonamidas/toxicidade , Fator de Crescimento Transformador beta/farmacologia , Malformações Vasculares/prevenção & controle , Anormalidades Induzidas por Medicamentos/embriologia , Anormalidades Induzidas por Medicamentos/genética , Anormalidades Induzidas por Medicamentos/metabolismo , Animais , Células Cultivadas , Canal de Potássio ERG1 , Técnicas de Cultura Embrionária , Células-Tronco Embrionárias/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Malformações Vasculares/induzido quimicamente , Malformações Vasculares/embriologia , Malformações Vasculares/genética , Malformações Vasculares/metabolismo
12.
Exp Physiol ; 98(2): 462-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22848083

RESUMO

Heart failure is associated with a low-grade and chronic cardiac inflammation that impairs function; however, the mechanisms by which this sterile inflammation occurs in structural heart disease remain poorly defined. Cardiac-specific heterozygous overexpression of the calcineurin transgene (CNTg) in mice results in cardiac hypertrophy, inflammation, apoptosis and ventricular dilatation. We hypothesized that activation of the Nlrp3 inflammasome, an intracellular danger-sensing pathway required for processing the pro-inflammatory cytokine interleukin-1ß (IL-1ß), may contribute to myocardial dysfunction and disease progression. Here we report that Nlrp3 mRNA was increased in CNTg mice compared with wild-type. Consistent with inflammasome activation, CNTg animals had increased conversion of pro-caspase-1 to cleaved and activated forms, as well as markedly increased serum IL-1ß. Blockade of IL-1ß signalling via chronic IL-1 receptor antagonist therapy reduced cardiac inflammation and myocyte pathology in CNTg mice, resulting in improved systolic performance. Furthermore, genetic ablation of Nlrp3 in CNTg mice reduced pro-inflammatory cytokine maturation and cardiac inflammation, as well as improving systolic performance. These findings indicate that activation of the Nlrp3 inflammasome in CNTg mice promotes myocardial inflammation and systolic dysfunction through the production of pro-inflammatory IL-1ß. Blockade of IL-1ß signalling with the IL-1 receptor antagonist reverses these phenotypes and offers a possible therapeutic approach in the management of heart failure.


Assuntos
Cardiomiopatias/imunologia , Proteínas de Transporte/metabolismo , Insuficiência Cardíaca/imunologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Miocardite/imunologia , Miocárdio/imunologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Proteínas de Transporte/genética , Caspase 1/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Precursores Enzimáticos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Inflamassomos/deficiência , Inflamassomos/genética , Mediadores da Inflamação/sangue , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocardite/genética , Miocardite/patologia , Miocardite/fisiopatologia , Miocardite/prevenção & controle , Miocárdio/patologia , Células NIH 3T3 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Sístole , Fatores de Tempo , Função Ventricular Esquerda
13.
J Pharmacol Exp Ther ; 342(2): 441-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22573844

RESUMO

Loss-of -function mutations in human ether-a-go-go-related gene 1 (hERG1) is associated with life-threatening arrhythmias. hERG1 activators are being developed as treatments for acquired or genetic forms of long QT syndrome. The locations of the putative binding pockets for activators are still being elucidated. In silico docking of the activator 1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea (NS1643) to an S1-S6 transmembrane homology model of hERG1 predicted putative binding sites. The predictions of the in silico docking guided subsequent in vitro mutagenesis and electrophysiological measurements. The novel interacting site for NS1643 is predicted around Asn629 at the outer mouth of the channel. The applied N629H mutation is the sole amino acid replacement in the literature that abrogates the NS1643-induced left shift of the V(1/2) of activation. In contrast, both N629T and N629D showed pharmacologic responses similar to wild type. Another important interacting pocket is predicted at the intracellular surface in the S4-S5 linker. Mutagenesis of the residues critical to interactions in this pocket had major effects on the pharmacologic response to NS1643. The inward conductance elicited by hyperpolarization of D540K hERG1 was abrogated by NS1643 treatment, suggesting that it alters the inward movement of the S4 segment. The neighboring E544L mutation markedly exaggerated tail-current responses to NS1643. However, an L564A substitution inhibited drug response. Structure-guided mutagenesis identified widespread clusters of amino acids modulating drug-induced shifts in inactivation; such modulation may reflect allosteric changes in tertiary structure. Model-guided mutagenesis led to the discovery of a range of novel interacting residues that modify NS1643-induced pharmacologic responses.


Assuntos
Cresóis/química , Cresóis/farmacologia , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína
14.
Proteins ; 78(14): 2922-34, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20740484

RESUMO

The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed.


Assuntos
Membrana Celular/fisiologia , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Simulação de Dinâmica Molecular , Algoritmos , Sítios de Ligação , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Potenciais da Membrana , Modelos Moleculares
15.
Biophys J ; 96(9): 3600-10, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19413965

RESUMO

hERG1 is a member of the cyclic nucleotide binding domain family of K(+) channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role. To explore this role, we created in silica models of the hERG1 pore domain based on the KvAP crystal structure with Rosetta-membrane modeling and molecular-dynamics simulations. Simulations indicate that the H562 residue in the S5 helix spans the gap between the S5 helix and the pore helix, stabilizing the pore domain, and that mutation at the H562 residue leads to a disruption of the hydrogen bonding to T618 and S621, resulting in distortion of the selectivity filter. Analysis of the simulated point mutations at positions 562/618/621 showed that the reciprocal double mutations H562W/T618I would partially restore the orientation of the 562 residue. Matching hydrophobic interactions between mutated W562 residue and I618 partially compensate for the disrupted hydrogen bonding. Complementary in vitro electrophysiological studies confirmed the results of the molecular-dynamics simulations on single mutations at positions 562, 618, and 621. Experimentally, mutations of the H562 to tryptophan produced a functional channel, but with slowed deactivation and shifted V(1/2) of activation. Furthermore, the double mutation T618I/H562W rescued the defects seen in activation, deactivation, and potassium selectivity seen with the H562W mutation. In conclusion, interactions between H562 in the S5 helix and amino acids in the pore helix are important determinants of hERG1 potassium channel function, as confirmed by theory and experiment.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Linhagem Celular , Simulação por Computador , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Técnicas de Patch-Clamp , Potássio/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
16.
Circ Res ; 103(12): 1483-91, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18948620

RESUMO

Loss-of-function mutations in the human ERG1 potassium channel (hERG1) frequently underlie the long QT2 (LQT2) syndrome. The role of the ERG potassium channel in cardiac development was elaborated in an in vivo model of a homozygous, loss-of-function LQT2 syndrome mutation. The hERG N629D mutation was introduced into the orthologous mouse gene, mERG, by homologous recombination in mouse embryonic stem cells. Intact homozygous embryos showed abrupt cessation of the heart beat. N629D/N629D embryos die in utero by embryonic day 11.5. Their developmental defects include altered looping architecture, poorly developed bulbus cordis, and distorted aortic sac and branchial arches. N629D/N629D myocytes from embryonic day 9.5 embryos manifested complete loss of I(Kr) function, depolarized resting potential, prolonged action potential duration (LQT), failure to repolarize, and propensity to oscillatory arrhythmias. N629D/N629D myocytes manifest calcium oscillations and increased sarcoplasmic reticulum Ca(+2) content. Although the N629D/N629D protein is synthesized, it is mainly located intracellularly, whereas +/+ mERG protein is mainly in plasmalemma. N629D/N629D embryos show robust apoptosis in craniofacial regions, particularly in the first branchial arch and, to a lesser extent, in the cardiac outflow tract. Because deletion of Hand2 produces apoptosis, in similar regions and with a similar final developmental phenotype, Hand2 expression was evaluated. Robust decrease in Hand2 expression was observed in the secondary heart field in N629D/N629D embryos. In conclusion, loss of I(Kr) function in N629D/N629D cardiovascular system leads to defects in cardiac ontogeny in the first branchial arch, outflow tract, and the right ventricle.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Homozigoto , Mutação de Sentido Incorreto/genética , Disfunção Ventricular Direita/embriologia , Disfunção Ventricular Direita/genética , Substituição de Aminoácidos/genética , Animais , Asparagina/genética , Ácido Aspártico/genética , Débito Cardíaco/genética , Canal de Potássio ERG1 , Feminino , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Síndrome do QT Longo/embriologia , Síndrome do QT Longo/genética , Síndrome do QT Longo/mortalidade , Camundongos , Camundongos Mutantes , Gravidez , Disfunção Ventricular Direita/mortalidade
17.
Am J Physiol Heart Circ Physiol ; 295(3): H1122-H1131, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18621856

RESUMO

Transgenic overexpression of calcineurin (CN/Tg) in mouse cardiac myocytes results in hypertrophy followed by dilation, dysfunction, and sudden death. Nitric oxide (NO) produced via inducible NO synthase (iNOS) has been implicated in cardiac injury. Since calcineurin regulates iNOS expression, and since phenotypes of mice overexpressing iNOS are similar to CN/Tg, we hypothesized that iNOS is pathogenically involved in cardiac phenotypes of CN/Tg mice. CN/Tg mice had increased serum and cardiac iNOS levels. When CN/Tg-iNOS(-/-) and CN/Tg mice were compared, some phenotypes were similar: extent of hypertrophy and fibrosis. However, CN/Tg-iNOS(-/-) mice had improved systolic performance (P < 0.001) and less heart block (P < 0.0001); larger sodium current density and lower serum TNF-alpha levels (P < 0.03); and less apoptosis (P < 0.01) resulting in improved survival (P < 0.0003). To define tissue origins of iNOS production, chimeric lines were generated. Bone marrow (BM) from wild-type or iNOS(-/-) mice was transplanted into CN/Tg mice. iNOS deficiency restricted to BM-derived cells was not protective. Calcineurin activates the local production of NO by iNOS in cardiac myocytes, which significantly contributes to sudden death, heart block, left ventricular dilation, and impaired systolic performance in this murine model of cardiac hypertrophy induced by the overexpression of calcineurin.


Assuntos
Calcineurina/genética , Calcineurina/fisiologia , Cardiomegalia/genética , Cardiomegalia/patologia , Morte Celular/fisiologia , Miócitos Cardíacos/enzimologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Morte Súbita , Ecocardiografia , Ensaio de Imunoadsorção Enzimática , Bloqueio Cardíaco/genética , Bloqueio Cardíaco/fisiopatologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Canais de Sódio/fisiologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/metabolismo
18.
Heart Rhythm ; 2(8): 860-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051125

RESUMO

BACKGROUND: Environmental and genetic factors interact to define susceptibility to drug-induced long QT syndrome. Although erythromycin induces long QT syndrome, substantial variability exists with regard to its incidence. OBJECTIVES: Because fever frequently results in empiric antibiotic usage, we assessed whether temperatures over the range from 36 degrees to 42 degrees C determined responsiveness to erythromycin (100 micromol/L). METHODS: I(hERG) was recorded in mammalian cells, and action potentials were recorded in neonatal ventricular mouse myocytes. RESULTS: Erythromycin (100 micromol/L) produced no block of I(hERG) at 22 degrees C but produced significant block at 37 degrees C. Extent of block of I(hERG) increased linearly (r = 0.46, P < .01) as temperature increased between 36 degrees C and 42 degrees C. To assess physiologic relevance, action potential duration (APD) was recorded at temperatures between 36 degrees C and 42 degrees C in neonatal ventricular myocytes. Significantly greater prolongation of APD by erythromycin was observed at 42 degrees C compared with 37 degrees C. To assess whether transmembrane diffusion of erythromycin was the rate-limiting step for block of I(hERG) at 22 degrees C, erythromycin was applied within the patch pipette. Under these conditions, erythromycin rapidly blocked I(hERG) even at 22 degrees C. The F656C mutation in the distal S6 of KCNH2 completely abrogated block of I(hERG) measured at 37 degrees C. CONCLUSION: Progressively greater block of hERG and prolongation of APD by erythromycin was observed at temperatures between 36 and 42 degrees C. Temperature-dependent block of I(hERG) is explained by temperature-dependent access of erythromycin to the intracellular binding site at F656.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Temperatura Corporal , Eritromicina/farmacologia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Proteínas de Transporte de Cátions/efeitos dos fármacos , Suscetibilidade a Doenças , Canal de Potássio ERG1 , Eletrofisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Camundongos , Fatores de Tempo
19.
Cardiovasc Res ; 61(2): 268-77, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14736543

RESUMO

OBJECTIVE: The long QT syndrome, N629D HERG mutation, alters the pore selectivity signature sequence, GFGN to GFGD. Heterologous co-expression of N629D and the wildtype HERG resulted in a relative loss of the selectivity of K+ over Na+, but its physiologic relevance has not been assessed in cardiac myocytes. METHODS AND RESULTS: Accordingly, N629D was overexpressed, via adenoviral gene transfer, in cardiomyocytes derived from mouse stem cells. Three IKr phenotypes were observed: (1) the wildtype-like IKr showed inward rectification and a positive tail current; (2) the N629D-like IKr showed outward rectification and an inward tail current; and (3) intermediate IKr showed a small outward tail current. Action potentials (AP) were paired with the IKr measurements in each cell. Resting membrane potential (RMP) was critically dependent on the IKr phenotype. The resting membrane potential of the cells was -61 +/- 5 mV (n=40) in wildtype, -63 +/- 3 mV (n=18) in wildtype-like IKr phenotype, -30 +/- 2 mV (n=12) in N629D-like and -47 +/- 2 mV (n=24) in intermediate phenotype (p<0.00001). Triggered action potential durations (APD) were: 62 +/- 12 ms (n=6) in wildtype, 65 +/- 11 ms (n=6) in wildtype-like IKr phenotypes and 106 +/- 10 ms (n=6) (p<0.01) in intermediate IKr phenotypes. Lowering [K+]o hyperpolarized wildtype cells and cells with a wildtype-like IKr phenotype, but depolarized those with intermediate phenotype (from -45 +/- 1 to -35 +/- 0.5 mV (n=12), p<0.01). In 6 of 12 cells, with intermediate phenotype, the hypokalemia-induced depolarization resulted in triggered activity. TTX suppressed this triggered activity. CONCLUSION: Overexpression of N629D in cardiomyocytes derived from stem cells results in phenotypic variability in IKr, which was the critical determinant of the resting membrane potential, action potential duration and arrhythmogenic response to low [K+]o.


Assuntos
Proteínas de Transporte de Cátions/genética , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Mutação Puntual , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , Potenciais de Ação , Adenoviridae/genética , Animais , Diferenciação Celular , Células Cultivadas , Canais de Potássio Éter-A-Go-Go , Vetores Genéticos/farmacologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Células-Tronco/citologia , Transdução Genética/métodos
20.
Cardiovasc Res ; 57(3): 642-50, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618226

RESUMO

OBJECTIVES: We hypothesized that exposure of N629D/wildtype channels to transient increases in [K(+)](o) could alter the conformation of the outer vestibule and thus reverse the disease phenotype. N629D is a recently described mutation of the HERG1 gene that causes familial long QT syndrome. This mutation alters the pore signature sequence resulting in loss of K(+) selectivity. Previous studies have reported that enforced occupancy of [K(+)](o) at sites near the selectivity filter alters the conformation/folding of the outer vestibule of the Kv2.1 channel. METHODS: Since the long QT syndrome is manifest in individuals who are heterozygous for this HERG trait, we co-expressed N629D and the wildtype at equimolar concentrations. RESULTS: Co-expression of N629D/wildtype in Xenopus oocytes and mammalian cells resulted in a channel with a positive shift in reversal potential and a loss in the outward tail current, relative to the wildtype. Exposure of the N629D/wildtype to transient increases in [K(+)](o) from 5 to 40 mM/l changed the tail current from inward to outward during repolarization and restored the reversal potential to values similar to the wildtype. These findings in Xenopus oocytes were also seen when N620D/wildtype channels were expressed in mammalian cells. These [K(+)](o)-dependent changes persisted for hours after the [K(+)](o) was returned to 2.5 mM. This potential therapeutic effect began with increases in [K(+)](o) from 2.5 to 5 mM. CONCLUSIONS: This study reports a novel therapeutic strategy and mechanism to partially restore physiologic function in this HERG LQTS mutation.


Assuntos
Proteínas de Transporte de Cátions , Síndrome do QT Longo/genética , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , Potássio/fisiologia , Animais , Eletrofisiologia , Canais de Potássio Éter-A-Go-Go , Feminino , Síndrome do QT Longo/fisiopatologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...