Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 629892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642986

RESUMO

While the backpropagation of error algorithm enables deep neural network training, it implies (i) bidirectional synaptic weight transport and (ii) update locking until the forward and backward passes are completed. Not only do these constraints preclude biological plausibility, but they also hinder the development of low-cost adaptive smart sensors at the edge, as they severely constrain memory accesses and entail buffering overhead. In this work, we show that the one-hot-encoded labels provided in supervised classification problems, denoted as targets, can be viewed as a proxy for the error sign. Therefore, their fixed random projections enable a layerwise feedforward training of the hidden layers, thus solving the weight transport and update locking problems while relaxing the computational and memory requirements. Based on these observations, we propose the direct random target projection (DRTP) algorithm and demonstrate that it provides a tradeoff between accuracy and computational cost that is suitable for adaptive edge computing devices.

2.
IEEE Trans Biomed Circuits Syst ; 13(1): 145-158, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418919

RESUMO

Shifting computing architectures from von Neumann to event-based spiking neural networks (SNNs) uncovers new opportunities for low-power processing of sensory data in applications such as vision or sensorimotor control. Exploring roads toward cognitive SNNs requires the design of compact, low-power and versatile experimentation platforms with the key requirement of online learning in order to adapt and learn new features in uncontrolled environments. However, embedding online learning in SNNs is currently hindered by high incurred complexity and area overheads. In this paper, we present ODIN, a 0.086-mm 2 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm FDSOI CMOS achieving a minimum energy per synaptic operation (SOP) of 12.7 pJ. It leverages an efficient implementation of the spike-driven synaptic plasticity (SDSP) learning rule for high-density embedded online learning with only 0.68  µm 2 per 4-bit synapse. Neurons can be independently configured as a standard leaky integrate-and-fire model or as a custom phenomenological model that emulates the 20 Izhikevich behaviors found in biological spiking neurons. Using a single presentation of 6k 16 × 16 MNIST training images to a single-layer fully-connected 10-neuron network with on-chip SDSP-based learning, ODIN achieves a classification accuracy of 84.5%, while consuming only 15 nJ/inference at 0.55 V using rank order coding. ODIN thus enables further developments toward cognitive neuromorphic devices for low-power, adaptive and low-cost processing.


Assuntos
Potenciais de Ação/fisiologia , Internet , Metais/química , Redes Neurais de Computação , Neurônios/fisiologia , Óxidos/química , Semicondutores , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Probabilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA