Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Neurosci ; 10(1): 17, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33095343

RESUMO

In this paper, we address the problem of the use of a human visual system (HVS) model to improve watermark invisibility. We propose a new color watermarking algorithm based on the minimization of the perception of color differences. This algorithm is based on a psychovisual model of the dynamics of cone photoreceptors. We used this model to determine the discrimination power of the human for a particular color and thus the best strategy to modify color pixels. Results were obtained on a color version of the lattice quantization index modulation (LQIM) method and showed improvements on psychovisual invisibility and robustness against several image distortions.

2.
Mol Oncol ; 14(6): 1268-1281, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32306542

RESUMO

Cross-linking of the B-cell receptor (BCR) induces transcriptional activation of immediate early genes (IEGs) including EGR1 and DUSP2 in chronic lymphocytic leukaemia (CLL). Here, we have shown that this transcriptional activation correlated with histone H3 threonine 6 and 11 phosphorylation. Both transcription and histone post-translational modifications are repressed by ibrutinib, a small molecule inhibitor used in CLL treatment. Moreover, we have identified the death-associated protein kinase 3 (DAPK3), as the kinase mediating these histone phosphorylation marks in response to activation of the BCR signalling pathway with this kinase being recruited to RNA polymerase II in an anti-IgM-dependent manner. DAPK inhibition mimics ibrutinib-induced repression of both IEG mRNA and histone H3 phosphorylation and has anti-proliferative effect comparable to ibrutinib in CLL in vitro. DAPK inhibitor does not repress transcription itself but impacts on mRNA processing and has a broader anti-tumour effect than ibrutinib, by repressing both anti-IgM- and CD40L-dependent activation.


Assuntos
Proteínas Quinases Associadas com Morte Celular/genética , Genes Precoces , Leucemia Linfocítica Crônica de Células B/genética , Processamento Pós-Transcricional do RNA/genética , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/metabolismo , Loci Gênicos , Histonas/metabolismo , Humanos , Imunoglobulina M/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo
3.
Oncogenesis ; 8(5): 32, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076570

RESUMO

Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in Western countries. It has recently been shown that the homogeneity of the chromatin landscape between CLL cells contrasts with the important observed genetic heterogeneity of the disease. To gain further insight into the consequences of disease evolution on the epigenome's plasticity, we monitored changes in chromatin structure occurring in vivo in CLL cells from patients receiving continuous Ibrutinib treatment. Ibrutinib, an oral inhibitor of the Bruton's tyrosine kinase (BTK) has proved to be remarkably efficient against treatment naïve (TN), heavily pre-treated and high-risk chronic lymphocytic leukaemia (CLL), with limited adverse events. We established that the chromatin landscape is significantly and globally affected in response to Ibrutinib. However, we observed that prior to treatment, CLL cells show qualitative and quantitative variations in chromatin structure correlated with both EZH2 protein level and cellular response to external stimuli. Then, under prolonged exposure to Ibrutinib, a loss of the two marks associated with lysine 27 (acetylation and trimethylation) was observed. Altogether, these data indicate that the epigenome of CLL cells from the peripheral blood change dynamically in response to stimuli and suggest that these cells might adapt to the Ibrutinib "hit" in a process leading toward a possible reduced sensitivity to treatment.

4.
J Mol Cell Biol ; 5(5): 308-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933634

RESUMO

Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.


Assuntos
Cromatina/química , Células Mieloides/metabolismo , Proteínas Repressoras/deficiência , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Intergênico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Coesinas
5.
PLoS One ; 8(3): e59389, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533622

RESUMO

The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPß controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Muramidase/genética , Muramidase/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Macrófagos/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
6.
Nucleic Acids Res ; 40(16): 7676-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22649058

RESUMO

IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quinase I-kappa B/metabolismo , Macrófagos/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular , Células Cultivadas , Quimiocina CCL3/genética , Cromatina/metabolismo , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Camundongos , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo
7.
Mol Cell Biol ; 30(24): 5741-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20956563

RESUMO

Development progresses through a sequence of cellular identities which are determined by the activities of networks of transcription factor genes. Alterations in cis-regulatory elements of these genes play a major role in evolutionary change, but little is known about the mechanisms responsible for maintaining conserved patterns of gene expression. We have studied the evolution of cis-regulatory mechanisms controlling the SCL gene, which encodes a key transcriptional regulator of blood, vasculature, and brain development and exhibits conserved function and pattern of expression throughout vertebrate evolution. SCL cis-regulatory elements are conserved between frog and chicken but accrued alterations at an accelerated rate between 310 and 200 million years ago, with subsequent fixation of a new cis-regulatory pattern at the beginning of the mammalian radiation. As a consequence, orthologous elements shared by mammals and lower vertebrates exhibit functional differences and binding site turnover between widely separated cis-regulatory modules. However, the net effect of these alterations is constancy of overall regulatory inputs and of expression pattern. Our data demonstrate remarkable cis-regulatory remodelling across the SCL locus and indicate that stable patterns of expression can mask extensive regulatory change. These insights illuminate our understanding of vertebrate evolution.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Biológica , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Vertebrados/genética , Proteínas de Xenopus/genética , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Galinhas , Sequência Conservada/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Genes Reporter , Hematopoese/genética , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo
8.
Acta Neurochir (Wien) ; 152(10): 1745-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20635104

RESUMO

Tentorial dural arteriovenous fistulas are rare and complex lesions in deep locations with unusual vascular anatomy and critical surrounding neuroanatomy. A rare case presenting a complex fistula with a giant venous draining ampulae, causing headaches and visual troubles is presented. We describe the case of a 52-year-old woman admitted in our department for headaches and visual troubles. Magnetic resonance imaging and cerebral angiography showed a tentorial dural arteriovenous fistula draining in a giant tentorial venous ampulae and leptomeningeal veins. The patient was embolised via an arterial route with a good clinical and radiological result. However, 4 days later she presented a sudden change of her clinical status with coma, left hemiparesis and a right midriasis. The cerebral computed tomography scan showed a huge occipital haemorrhagic mass and a severe cerebral oedema. An emergent surgical procedure was decided realising evacuation of the occipital haematoma and a complete resection of the giant venous ampoule. The neck of the ampulae was sutured and clipped at its dural entrance. Postoperatively a new embolisation was realised because of persistent of a small dural fistulae with occipital leptomeningeal drainage. The patient recovered rapidly with only a residual hemianopsy. Treatment of dural AV malformation represent a serious challenge. Our report describes an unusual case of a tentorial dural complex fistula treated by an endovascular procedure with secondary clinical aggravation that needed emergent surgical therapy. Even in a case for good immediate radiological result after endovascular procedure, dural arteriovenous fistulas with giant venous ampulae and important venous engorgement, need closed follow-up, because of the possibility of aggravation secondary to venous thrombosis and haemorrhage. Treatment and patophysiology of the aggravation mechanism are discussed.


Assuntos
Malformações Vasculares do Sistema Nervoso Central/patologia , Malformações Vasculares do Sistema Nervoso Central/cirurgia , Veias Cerebrais/patologia , Veias Cerebrais/cirurgia , Embolização Terapêutica/métodos , Procedimentos Neurocirúrgicos/métodos , Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Veias Cerebrais/diagnóstico por imagem , Embolização Terapêutica/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Radiografia
9.
Nucleic Acids Res ; 37(20): 6818-30, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19740763

RESUMO

The transcription factor RUNX1 (AML1) is an important regulator of haematopoiesis, and an important fusion partner in leukaemic translocations. High-affinity DNA binding by RUNX1 requires the interaction of the RUNX1 Runt-Homology-Domain (RHD) with the core-binding factor beta protein (CBFbeta). To generate novel reagents for in vitro and in vivo studies of RUNX1 function, we have selected high-affinity RNA aptamers against a recombinant RHD-CBFbeta complex. Selection yielded two sequence families, each dominated by a single consensus sequence. Aptamers from each family disrupt DNA binding by the RUNX1 protein in vitro and compete with sequence-specific dsDNA binding. Minimal, high-affinity ( approximately 100-160 nM) active aptamer fragments 28 and 30 nts in length, consisting of simple short stem-loop structures, were then identified. These bind to the RHD subunit and disrupt its interaction with CBFbeta, which is consistent with reduced DNA affinity in the presence of aptamer. These aptamers represent new reagents that target a novel surface on the RHD required to stabilize the recombinant RHD-CBFbeta complex and thus will further aid exploring the functions of this key transcription factor.


Assuntos
Aptâmeros de Nucleotídeos/química , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade beta de Fator de Ligação ao Core/metabolismo , Sítios de Ligação , DNA/metabolismo
10.
Mol Cell ; 32(1): 129-39, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18851839

RESUMO

Transcription of the lysozyme gene is rapidly induced by proinflammatory stimuli such as treatment with bacterial lipopolysaccharide (LPS). Here we show that this induction involves both the relief of repression mediated by the enhancer-blocking protein CTCF that binds to a negative regulatory element at -2.4 kb, and the activation of two flanking enhancer elements. The downstream enhancer has promoter activity, and LPS stimulation initiates the transient synthesis of a noncoding RNA (LINoCR) transcribed through the -2.4 kb element. Expression of LINoCR is correlated with IKKalpha recruitment, histone H3 phosphoacetylation in the transcribed region, the repositioning of a nucleosome over the CTCF binding site, and, eventually, CTCF eviction. Each of these events requires transcription elongation. Our data reveal a transcription-dependent mechanism of chromatin remodeling that switches a cis-regulatory region from a repressive to an active conformation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Muramidase/genética , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Galinhas , Primers do DNA/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Elementos Reguladores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Nucleic Acids Res ; 34(14): 4025-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16914441

RESUMO

Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the -2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression.


Assuntos
Galinhas/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Macrófagos/metabolismo , Muramidase/genética , Acetilação , Animais , Anticorpos , Linhagem Celular , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Células Precursoras de Granulócitos/metabolismo , Histonas/imunologia , Muramidase/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/metabolismo , Ativação Transcricional
12.
Methods Mol Biol ; 325: 315-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16761735

RESUMO

Epigenetic processes involve alterations in the covalent modification of histones, which are driven by sequence-specific transcription factors recruiting the enzymatic machinery performing these reactions. Such histone modifications alter the charge or biochemical surface of the chromatin fiber and also serve as "docking" sites for transcription factor and chromatin remodelling complexes. Examining histone modification patterns is vital if we want to understand how transcription complexes establish patterns of gene expression. Histone modification can be quite localized and sometimes only involves a few nucleosomes. We therefore established a chromatin immunoprecipitation procedure that uses crosslinked chromatin allowing the isolation of small chromatin fragments while simultaneously minimizing histone movement during chromatin preparation.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/química , Reagentes de Ligações Cruzadas/farmacologia , Técnicas Genéticas , Histonas/química , Nuclease do Micrococo/farmacologia , Animais , DNA/química , Formaldeído/farmacologia , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase
13.
Nucleic Acids Res ; 33(17): 5633-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16204459

RESUMO

The replacement histone H2A.Z is variously reported as being linked to gene expression and preventing the spread of heterochromatin in yeast, or concentrated at heterochromatin in mammals. To resolve this apparent dichotomy, affinity-purified antibodies against the N-terminal region of H2A.Z, in both a triacetylated and non-acetylated state, are used in native chromatin immmuno-precipitation experiments with mononucleosomes from three chicken cell types. The hyperacetylated species concentrates at the 5' end of active genes, both tissue specific and housekeeping but is absent from inactive genes, while the unacetylated form is absent from both active and inactive genes. A concentration of H2A.Z is also found at insulators under circumstances implying a link to barrier activity but not to enhancer blocking. Although acetylated H2A.Z is widespread throughout the interphase genome, at mitosis its acetylation is erased, the unmodified form remaining. Thus, although H2A.Z may operate as an epigenetic marker for active genes, its N-terminal acetylation does not.


Assuntos
Histonas/análise , Transcrição Gênica , Acetilação , Animais , Anticorpos/imunologia , Células Cultivadas , Embrião de Galinha , Galinhas/genética , Histonas/imunologia , Histonas/metabolismo
14.
J Biol Chem ; 280(30): 27552-60, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15923188

RESUMO

It is now well established that locus-wide chromatin remodeling and dynamic alterations of histone modifications are required for the developmentally regulated activation of tissue-specific genes. However, little is known about the dynamics of these events during cell differentiation and how chromatin of an entire gene locus responds to signal transduction processes. To address this issue we investigated chromatin accessibility, linker histone distribution, and the histone methylation status at the macrophage-specific chicken lysozyme locus and the ubiquitously expressed gas41 locus in multipotent precursor cell lines and BM2 monoblast cells. The latter can be induced to go through macrophage maturation by treatment with phorbol-12-myristate acetate and can be further stimulated with bacterial lipopolysaccharide. We show that expression of the lysozyme gene in undifferentiated monoblasts is low and that a high level of gene expression requires both cell differentiation and lipopolysaccharide stimulation. However, depletion of the linker histone H1 is observed already in lysozyme non-expressing multipotent precursor cells. In undifferentiated monoblasts, the lysozyme regulatory regions are marked by the presence of monomethylated histone H3 lysine 4, which becomes increasingly converted into trimethylated H3 lysine K4 during cell differentiation. We also present evidence for extensive, differentiation-dependent alterations in nuclease accessibility at the lysozyme promoter without alterations of nucleosome and transcription factor occupancy.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Muramidase/química , Muramidase/genética , Animais , Soluções Tampão , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Galinhas , Cromatina/química , Imunoprecipitação da Cromatina , Lipopolissacarídeos/metabolismo , Lisina/química , Macrófagos/metabolismo , Modelos Genéticos , Monócitos/metabolismo , Nucleossomos/metabolismo , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Acetato de Tetradecanoilforbol/metabolismo , Transcrição Gênica
15.
Oncogene ; 24(22): 3643-51, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15806141

RESUMO

The macrophage colony-stimulating factor receptor is encoded by the c-FMS gene, and it has been suggested that altered regulation of c-FMS expression may contribute to leukaemic transformation. c-FMS is expressed in pluripotent haemopoietic precursor cells and is subsequently upregulated during monocytic differentiation, but downregulated during granulopoiesis. We have examined transcription factor occupancy and aspects of chromatin structure of the critical c-FMS regulatory element located within the second intron (FIRE - fms intonic regulatory element) during normal and leukaemic myelopoiesis. Granulocytic differentiation from normal and leukaemic precursors is accompanied by loss of transcription factors at FIRE and downregulated c-FMS expression. The presence of AML1-ETO in leukaemic cells does not prevent this disassembly. In nonleukaemic cells, granulocytic differentiation is accompanied by reversal to a chromatin fine structure characteristic of c-FMS-nonexpressing cells. In addition, we show that low-level expression of the gene in leukaemic blast cells and granulocytes does not associate with increased CpG methylation across the c-FMS locus.


Assuntos
Cromatina/genética , Granulócitos/citologia , Leucemia/genética , Mielopoese/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fatores de Transcrição/genética , Sequência de Bases , Diferenciação Celular/genética , Cromatina/química , Ilhas de CpG , Metilação de DNA , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
EMBO J ; 23(21): 4275-85, 2004 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-15483629

RESUMO

The murine c-fms (Csf1r) gene encodes the macrophage colony-stimulating factor receptor, which is essential for macrophage development. It is expressed at a low level in haematopoietic stem cells and is switched off in all non-macrophage cell types. To examine the role of chromatin structure in this process we studied epigenetic silencing of c-fms during B-lymphopoiesis. c-fms chromatin in stem cells and multipotent progenitors is in the active conformation and bound by transcription factors. A similar result was obtained with specified common myeloid and lymphoid progenitor cells. In developing B cells, c-fms chromatin is silenced in distinct steps, whereby first the binding of transcription factors and RNA expression is lost, followed by a loss of nuclease accessibility. Interestingly, regions of de novo DNA methylation in B cells overlap with an intronic antisense transcription unit that is differently regulated during lymphopoiesis. However, even at mature B cell stages, c-fms chromatin is still in a poised conformation and c-fms expression can be re-activated by conditional deletion of the transcription factor Pax5.


Assuntos
Linfócitos B/fisiologia , Cromatina , Epigênese Genética , Inativação Gênica , Genes fms , Linfopoese/fisiologia , Animais , Cromatina/química , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Histonas/química , Histonas/metabolismo , Camundongos , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes/fisiologia , Regiões Promotoras Genéticas , RNA Antissenso/genética , RNA Antissenso/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
Blood ; 103(8): 2950-5, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15070670

RESUMO

In order to gain insights in the true molecular mechanisms involved in cell fate decisions, it is important to study the molecular details of gene activation where such decisions occur, which is at the level of the chromatin structure of individual genes. In the study presented here we addressed this issue and examined the dynamic development of an active chromatin structure at the chicken lysozyme locus during the differentiation of primary myeloid cells from transgenic mouse bone marrow. Using in vivo footprinting we found that stable enhancer complex assembly and high-level gene expression are late events in cell differentiation. However, even before the onset of gene expression and stable transcription factor binding, specific chromatin alterations are observed. This includes changes in DNA topology and the selective demethylation of CpG dinucleotides located in the cores of critical transcription factor binding sites, but not in flanking DNA. These results firmly support the idea that epigenetic programs guiding blood cell differentiation are engraved into the chromatin of lineage-specific genes and that such chromatin changes are implemented before cell lineage specification.


Assuntos
Cromatina/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Galinhas , Ilhas de CpG , Metilação de DNA , DNA Recombinante/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Camundongos , Camundongos Transgênicos , Muramidase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
18.
Nucleic Acids Res ; 31(20): 5805-16, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14530429

RESUMO

The c-FMS gene encodes the macrophage colony-stimulating factor receptor (M-CSFR or CSF1-R), which is a tyrosine kinase growth factor receptor essential for macrophage development. We have previously characterized the chromatin features of the mouse gene; however, very little is known about chromatin structure and function of the human c-FMS locus. Here we present a side-by-side comparison of the chromatin structure, histone modification, transcription factor occupancy and cofactor recruitment of the human and the mouse c-FMS loci. We show that, similar to the mouse gene, the human c-FMS gene possesses a promoter and an intronic enhancer element (c-fms intronic regulatory element or FIRE). Both elements are evolutionarily conserved and specifically active in macrophages. However, we demonstrate by in vivo footprinting that both murine and human c-FMS cis-regulatory elements are recognised by an overlapping, but non-identical, set of transcription factors. Despite these differences, chromatin immunoprecipitation experiments show highly similar patterns of histone H3 modification and a similar distribution of chromatin modifying and remodelling activities at individual cis-regulatory elements and across the c-FMS locus. Our experiments support the hypothesis that the same regulatory principles operate at both genes via conserved cores of transcription factor binding sites.


Assuntos
Cromatina/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fatores de Transcrição/metabolismo , Células 3T3 , Acetilação , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Células HL-60 , Células HeLa , Histonas/metabolismo , Humanos , Íntrons/genética , Lisina/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Metilação , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Proteína de Ligação a TATA-Box/metabolismo
19.
EMBO J ; 22(11): 2798-809, 2003 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-12773394

RESUMO

Although many leukaemia-associated nuclear oncogenes are well characterized, little is known about the molecular details of how they alter gene expression. Here we examined transcription factor complexes and chromatin structure of the human c-FMS gene in normal and leukaemic cells. We demonstrate by in vivo footprinting and chromatin immunoprecipitation assays that this gene is bound by the transcription factor AML1 (RUNX1). In t(8;21) leukaemic cells expressing the aberrant fusion protein AML1-ETO, we demonstrate that this protein is part of a transcription factor complex binding to extended sequences of the c-FMS intronic regulatory region rather than the promoter. The AML1-ETO complex does not disrupt binding of other transcription factors, indicating that c-FMS is not irreversibly epigenetically silenced. However, AML1-ETO binding correlates with changes in the histone modification pattern and increased association of histone deacetylases. Our experiments provide for the first time a direct insight into the chromatin structure of an AML1-ETO-bound target gene.


Assuntos
Genes fms , Leucemia Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Doença Aguda , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Subunidade alfa 2 de Fator de Ligação ao Core , Expressão Gênica , Inativação Gênica , Células HL-60 , Células HeLa , Histona Desacetilase 1 , Histona Desacetilases/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Íntrons , Leucemia Mieloide/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteína 1 Parceira de Translocação de RUNX1 , Translocação Genética
20.
Mol Cell Biol ; 23(12): 4386-400, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773578

RESUMO

Expression of the chicken lysozyme gene is upregulated during macrophage differentiation and reaches its highest level in bacterial lipopolysaccharide (LPS)-stimulated macrophages. This is accompanied by complex alterations in chromatin structure. We have previously shown that chromatin fine-structure alterations precede the onset of gene expression in macrophage precursor cells and mark the lysozyme chromatin domain for expression later in development. To further examine this phenomenon and to investigate the basis for the differentiation-dependent alterations of lysozyme chromatin, we studied the recruitment of transcription factors to the lysozyme locus in vivo at different stages of myeloid differentiation. Factor recruitment occurred in several steps. First, early-acting transcription factors such as NF1 and Fli-1 bound to a subset of enhancer elements and recruited CREB-binding protein. LPS stimulation led to an additional recruitment of C/EBPbeta and a significant change in enhancer and promoter structure. Transcription factor recruitment was accompanied by specific changes in histone modification within the lysozyme chromatin domain. Interestingly, we present evidence for a transient interaction of transcription factors with lysozyme chromatin in lysozyme-nonexpressing macrophage precursors, which was accompanied by a partial demethylation of CpG sites. This indicates that a partially accessible chromatin structure of lineage-specific genes is a hallmark of hematopoietic progenitor cells.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Muramidase/química , Animais , Sequência de Bases , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Linhagem Celular Transformada , Galinhas , Cromatina/química , DNA/metabolismo , Histonas/metabolismo , Macrófagos/citologia , Metilação , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Muramidase/metabolismo , Testes de Precipitina , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...