Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109636, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38633000

RESUMO

Halogen bonding is increasingly utilized in efforts to achieve high affinity and selectivity of molecules designed to bind proteins, making it paramount to understand the relationship between structure, dynamics, and thermodynamic driving forces. We present a detailed analysis addressing this problem using a series of protein-ligand complexes involving single halogen substitutions - F, Cl, Br, and I - and nearly identical structures. Isothermal titration calorimetry reveals an increasingly favorable binding enthalpy from F to I that correlates with the halogen size and σ-hole electropositive character, but is partially counteracted by unfavorable entropy, which is constant from F to Cl and Br, but worse for I. Consequently, the binding free energy is roughly equal for Cl, Br, and I. QM and solvation-free-energy calculations reflect an intricate balance between halogen bonding, hydrogen bonds, and solvation. These advances have the potential to aid future drug design initiatives involving halogenated compounds.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37735065

RESUMO

Most cell surface proteins are decorated by glycans, and the plasma membrane is rich in glycosylated lipids. The mechanisms by which the enormous complexity of these glycan structures on proteins and lipids is exploited to control glycoprotein activity by setting their cell surface residence time and the ways by which they are taken up into cells are still under active investigation. Here, two mechanisms are presented, termed galectin lattices and glycolipid-lectin (GL-Lect)-driven endocytosis, which are among the most prominent to establish a link between glycan information and endocytosis. Types of glycans on glycoproteins and glycolipids are reviewed from the angle of their interaction with glycan-binding proteins that are at the heart of galectin lattices and GL-Lect-driven endocytosis. Examples are given to show how these mechanisms affect cellular functions ranging from cell migration and signaling to vascularization and immune modulation. Finally, outstanding challenges on the link between glycosylation and endocytosis are discussed.


Assuntos
Endocitose , Polissacarídeos , Polissacarídeos/química , Endocitose/fisiologia , Membrana Celular/metabolismo , Galectinas/química , Galectinas/metabolismo , Lipídeos
3.
J Med Chem ; 66(24): 16980-16990, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38059452

RESUMO

A new series of orally available α-d-galactopyranosides with high affinity and specificity toward galectin-1 have been discovered. High affinity and specificity were achieved by changing six-membered aryl-triazolyl substituents in a series of recently published galectin-3-selective α-d-thiogalactosides (e.g., GB1107 Kd galectin-1/3 3.7/0.037 µM) for five-membered heterocycles such as thiazoles. The in vitro pharmacokinetic properties were optimized, resulting in several galectin-1 inhibitors with favorable properties. One compound, GB1490 (Kd galectin-1/3 0.4/2.7 µM), was selected for further characterization toward a panel of galectins showing a selectivity of 6- to 320-fold dependent on galectin. The X-ray structure of GB1490 bound to galectin-1 reveals the compound bound in a single conformation in the carbohydrate binding site. GB1490 was shown to reverse galectin-1-induced apoptosis of Jurkat cells at low µM concentrations. No cell cytotoxicity was observed for GB1490 up to 90 µM in the A549 cells. In pharmacokinetic studies in mice, GB1490 showed high oral bioavailability (F% > 99%).


Assuntos
Galectina 1 , Galectina 3 , Humanos , Animais , Camundongos , Galectina 1/química , Galectina 1/metabolismo , Galectina 3/metabolismo , Sítios de Ligação , Carboidratos/química , Células Jurkat
4.
J Med Chem ; 66(21): 14716-14723, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37878264

RESUMO

Galectins play biological roles in immune regulation and tumor progression. Ligands with high affinity for the shallow, hydrophilic galectin-3 ligand binding site rely primarily on a galactose core with appended aryltriazole moieties, making hydrophobic interactions and π-stacking. We designed and synthesized phenyl sulfone, sulfoxide, and sulfide-triazolyl thiogalactoside derivatives to create affinity-enhancing hydrogen bonds, hydrophobic and π-interactions. Crystal structures and thermodynamic analyses revealed that the sulfoxide and sulfone ligands form hydrogen bonds while retaining π-interactions, resulting in improved affinities and unique binding poses. The sulfoxide, bearing one hydrogen bond acceptor, leads to an affinity decrease compared to the sulfide, whereas the corresponding sulfone forms three hydrogen bonds, two directly with Asn and Arg side chains and one water-mediated to an Asp side chain, respectively, which alters the complex structure and increases affinity. These findings highlight that the sulfur oxidation state influences both the interaction thermodynamics and structure.


Assuntos
Galectina 3 , Galectinas , Galectina 3/metabolismo , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Enxofre , Sulfetos , Sulfonas , Sulfóxidos
5.
J Med Chem ; 66(17): 12420-12431, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37658813

RESUMO

Galectin-3 is involved in multiple pathways of many diseases, including cancer, fibrosis, and diabetes, and it is a validated pharmaceutical target for the development of novel therapeutic agents to address unmet medical needs. Novel 1,2-thiodisaccharides with a C-glycosylic functionality were synthesized by the photoinitiated thiol-ene click reaction of O-peracylated 1-C-substituted glycals and 1-thio-glycopyranoses. Subsequent global deprotection yielded test compounds, which were studied for their binding to human galectin-3 by fluorescence polarization and isothermal titration calorimetry to show low micromolar Kd values. The best inhibitor displayed a Kd value of 8.0 µM. An analysis of the thermodynamic binding parameters revealed that the binding Gibbs free energy (ΔG) of the new inhibitors was dominated by enthalpy (ΔH). The binding mode of the four most efficient 1,2-thiodisaccharides was also studied by X-ray crystallography that uncovered the unique role of water-mediated hydrogen bonds in conferring enthalpy-driven affinity enhancement for the new inhibitors. This 1,2-thiodisaccharide-type scaffold represents a new lead for galectin-3 inhibitor discovery and offers several possibilities for further development.


Assuntos
Galectina 3 , Galectinas , Humanos , Ligação de Hidrogênio , Termodinâmica , Água
6.
iScience ; 26(7): 106984, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534161

RESUMO

Galectins are a group of carbohydrate-binding proteins with a presumed immunomodulatory role and an elusive function on antigen-presenting cells. Here we analyzed the expression of galectin-1 and found upregulation of galectin-1 in the extracellular matrix across multiple tumors. Performing an in-depth and dynamic proteomic and phosphoproteomic analysis of human macrophages stimulated with galectin-1, we show that galectin-1 induces a tumor-associated macrophage phenotype with increased expression of key immune checkpoint protein programmed cell death 1 ligand 1 (PD-L1/CD274) and immunomodulator indoleamine 2,3-dioxygenase-1 (IDO1). Galectin-1 induced IDO1 and its active metabolite kynurenine in a dose-dependent manner through JAK/STAT signaling. In a 3D organotypic tissue model system equipped with genetically engineered tumorigenic epithelial cells, we analyzed the cellular source of galectin-1 in the extracellular matrix and found that galectin-1 is derived from epithelial and stromal cells. Our results highlight the potential of targeting galectin-1 in immunotherapeutic treatment of human cancers.

7.
Glycobiology ; 33(6): 503-511, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37073717

RESUMO

Among the responders to microbial invasion, neutrophils represent the earliest and perhaps the most important immune cells that contribute to host defense with the primary role to kill invading microbes using a plethora of stored anti-microbial molecules. One such process is the production of reactive oxygen species (ROS) by the neutrophil enzyme complex NADPH-oxidase, which can be assembled and active either extracellularly or intracellularly in phagosomes (during phagocytosis) and/or granules (in the absence of phagocytosis). One soluble factor modulating the interplay between immune cells and microbes is galectin-3 (gal-3), a carbohydrate-binding protein that regulates a wide variety of neutrophil functions. Gal-3 has been shown to potentiate neutrophil interaction with bacteria, including Staphylococcus aureus, and is also a potent activator of the neutrophil respiratory burst, inducing large amounts of granule-localized ROS in primed cells. Herein, the role of gal-3 in regulating S. aureus phagocytosis and S. aureus-induced intracellular ROS was analyzed by imaging flow cytometry and luminol-based chemiluminescence, respectively. Although gal-3 did not interfere with S. aureus phagocytosis per se, it potently inhibited phagocytosis-induced intracellular ROS production. Using the gal-3 inhibitor GB0139 (TD139) and carbohydrate recognition domain of gal-3 (gal-3C), we found that the gal-3-induced inhibitory effect on ROS production was dependent on the carbohydrate recognition domain of the lectin. In summary, this is the first report of an inhibitory role of gal-3 in regulating phagocytosis-induced ROS production.


Assuntos
Neutrófilos , Staphylococcus aureus , Humanos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Galectina 3/metabolismo , Explosão Respiratória , Fagocitose
8.
Cancer Chemother Pharmacol ; 91(3): 267-280, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914828

RESUMO

PURPOSE: Galectin-3, a ß-galactoside-binding lectin, plays a key role in several cellular pathways involved in chronic inflammation, heart disease and cancer. GB1211 is an orally bioavailable galectin-3 inhibitor, developed to be systemically active. We report safety and pharmacokinetics (PK) of GB1211 in healthy participants. METHODS: This phase 1, double-blind, placebo-controlled, first-in-human study (NCT03809052) included a single ascending-dose phase (with a food-effect cohort) where participants across seven sequential cohorts were randomized 3:1 to receive oral GB1211 (5, 20, 50, 100, 200 or 400 mg) or placebo. In the multiple ascending-dose phase, participants received 50 or 100 mg GB1211 or placebo twice daily for 10 days. All doses were administered in the fasted state except in the food-effect cohort where doses were given 30 min after a high-fat meal. RESULTS: All 78 participants received at least one GB1211 dose (n = 58) or placebo (n = 20) and completed the study. No safety concerns were identified. Following single and multiple oral doses under fasted conditions, maximum GB1211 plasma concentrations were reached at 1.75-4 h (median) post-dose; mean half-life was 11-16 h. There was a ~ twofold GB1211 accumulation in plasma with multiple dosing, with steady-state reached within 3 days; 30% of the administered dose was excreted in urine as unchanged drug. Absorption in the fed state was delayed by 2 h but systemic exposure was unaffected. CONCLUSION: GB1211 was well tolerated, rapidly absorbed, and displayed favorable PK, indicating a potential to treat multiple disease types. These findings support further clinical development of GB1211. CLINICAL TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov (identifier: NCT03809052).


Assuntos
Galectina 3 , Humanos , Administração Oral , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Galectina 3/antagonistas & inibidores , Voluntários Saudáveis
9.
SLAS Discov ; 28(5): 233-239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990319

RESUMO

Galectin-3 is a beta-galactoside-binding mammalian lectin that is one of a 15-member galectin family that can bind several cell surface glycoproteins via its carbohydrate recognition domain (CRD). As a result, it can influence a range of cellular processes including cell activation, adhesion and apoptosis. Galectin-3 has been implicated in various diseases, including fibrotic disorders and cancer, and is now being therapeutically targeted by both small and large molecules. Historically, the screening and triaging of small molecule glycomimetics that bind to the galectin-3 CRD has been completed in fluorescence polarisation (FP) assays to determine KD values. Surface plasmon resonance (SPR) has not been widely used for compound screening and in this study it was used to compare human and mouse galectin-3 affinity measures between FP and SPR, as well as investigate compound kinetics. The KD estimates for a set of compounds selected from mono- and di-saccharides with affinities across a 550-fold range, correlated well between FP and SPR assay formats for both human and mouse galectin-3. Increases in affinity for compounds binding to human galectin-3 were driven by changes in both kon and koff whilst for mouse galectin-3 this was primarily due to kon. The reduction in affinity observed between human to mouse galectin-3 was also comparable between assay formats. SPR has been shown to be a viable alternative to FP for early drug discovery screening and determining KD values. In addition, it can also provide early kinetic characterisation of small molecule galectin-3 glycomimetics with robust kon and koff values generated in a high throughput manner.


Assuntos
Galectina 3 , Ressonância de Plasmônio de Superfície , Humanos , Animais , Camundongos , Galectina 3/genética , Galectina 3/química , Galectina 3/metabolismo , Cinética , Galectinas/química , Galectinas/metabolismo , Carboidratos/química , Mamíferos/metabolismo
11.
Cells ; 12(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672263

RESUMO

Background: Fibroblast-like synoviocytes (FLSs) are essential mediators in the expansive growth and invasiveness of rheumatoid synovitis, and patients with a fibroblastic-rich pauci-immune pathotype respond poorly to currently approved antirheumatic drugs. Galectin-9 (Gal-9) has been reported to directly modulate rheumatoid arthritis (RA) FLSs and to hold both pro- and anti-inflammatory properties. The objective of this study was to evaluate clinical and pathogenic aspects of Gal-9 in RA, combining national patient cohorts and cellular models. Methods: Soluble Gal-9 was measured in plasma from patients with newly diagnosed, treatment-naïve RA (n = 98). The disease activity score 28-joint count C-reactive protein (DAS28CRP) and total Sharp score were used to evaluate the disease course serially over a two-year period. Plasma and synovial fluid samples were examined for soluble Gal-9 in patients with established RA (n = 18). A protein array was established to identify Gal-9 binding partners in the extracellular matrix (ECM). Synovial fluid mononuclear cells (SFMCs), harvested from RA patients, were used to obtain synovial-fluid derived FLSs (SF-FLSs) (n = 7). FLSs from patients suffering from knee Osteoarthritis (OA) were collected from patients when undergoing joint replacement surgery (n = 5). Monocultures of SF-FLSs (n = 6) and autologous co-cultures of SF-FLSs and peripheral blood mononuclear cells (PBMCs) were cultured with and without a neutralizing anti-Gal-9 antibody (n = 7). The mono- and co-cultures were subsequently analyzed by flow cytometry, MTT assay, and ELISA. Results: Patients with early and established RA had persistently increased plasma levels of Gal-9 compared with healthy controls (HC). The plasma levels of Gal-9 were associated with disease activity and remained unaffected when adding a TNF-inhibitor to their standard treatment. Gal-9 levels were elevated in the synovial fluid of established RA patients with advanced disease, compared with corresponding plasma samples. Gal-9 adhered to fibronectin, laminin and thrombospondin, while not to interstitial collagens in the ECM protein array. In vitro, a neutralizing Gal-9 antibody decreased MCP-1 and IL-6 production from both RA FLSs and OA FLSs. In co-cultures of autologous RA FLSs and PBMCs, the neutralization of Gal-9 also decreased MCP-1 and IL-6 production, without affecting the proportion of inflammatory FLSs. Conclusions: In RA, pretreatment plasma Gal-9 levels in early RA were increased and correlated with clinical disease activity. Gal-9 levels remained increased despite a significant reduction in the disease activity score in patients with early RA. The in vitro neutralization of Gal-9 decreased both MCP-1 and IL-6 production in an inflammatory subset of RA FLSs. Collectively these findings indicate that the persistent overexpression of Gal-9 in RA may modulate synovial FLS activities and could be involved in the maintenance of subclinical disease activity in RA.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Fibroblastos/metabolismo , Galectinas/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo
12.
J Med Chem ; 65(19): 12626-12638, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36154172

RESUMO

Galectin-3 is a carbohydrate-binding protein central to regulating mechanisms of diseases such as fibrosis, cancer, metabolic, inflammatory, and heart disease. We recently found a high affinity (nM) thiodigalactoside GB0139 which currently is in clinical development (PhIIb) as an inhaled treatment of idiopathic pulmonary fibrosis. To enable treatment of systemically galectin-3 driven disease, we here present the first series of selective galectin-3 inhibitors combining high affinity (nM) with oral bioavailability. This was achieved by optimizing galectin-3 specificity and physical chemical parameters for a series of disubstituted monogalactosides. Further characterization showed that this class of compounds reduced profibrotic gene expression in liver myofibroblasts and displayed antifibrotic activity in CCl4-induced liver fibrosis and bleomycin-induced lung fibrosis mouse models. On the basis of the overall pharmacokinetic, pharmacodynamic, and safety profile, GB1211 was selected as the clinical candidate and is currently in phase IIa clinical trials as a potential therapy for liver cirrhosis and cancer.


Assuntos
Galectina 3 , Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Tetracloreto de Carbono , Fibrose , Galectina 3/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Pulmão , Camundongos , Tiogalactosídeos , Triazóis
13.
Front Pharmacol ; 13: 949264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003515

RESUMO

Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in vitro. Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing regimen. GB0139 (1-30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines. Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases in interleukin (IL)-6, tumor necrosis factor alpha (TNFα) and macrophage inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-8, TNFα, IL-6 in alveolar epithelial cells in response to mechanical stretch. Conclusion: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports the development of GB0139, as a potential treatment approach in ALI.

14.
RSC Adv ; 12(29): 18973-18984, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873334

RESUMO

Galectins are galactoside-binding proteins that play a role in various pathophysiological conditions, making them attractive targets in drug discovery. We have designed and synthesised a focused library of aromatic 3-triazolyl-1-thiogalactosides targeting their core site for binding of galactose and a subsite on its non-reducing side. Evaluation of their binding affinities for galectin-1, -3, and -8N identified acetamide-based compound 36 as a suitable compound for further affinity enhancement by adding groups at the reducing side of the galactose. Synthesis of its dichlorothiophenyl analogue 59 and the thiodigalactoside analogue 62 yielded promising pan-galectin inhibitors.

15.
Front Immunol ; 13: 915890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812455

RESUMO

4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL's bioactivity.


Assuntos
Galectina 3 , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Ligante 4-1BB/química , Ligante 4-1BB/metabolismo , Galectina 3/química , Células HEK293 , Humanos , Receptores de Antígenos de Linfócitos T , Receptores do Fator de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
16.
ACS Chem Biol ; 17(6): 1376-1386, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35605245

RESUMO

Aberrations in glycan and lectin expression and function represent one of the earliest hallmarks of cancer. Among galectins, a conserved family of ß-galactoside-binding lectins, the role of Galectin-9 in immune-tumor interactions is well-established, although its effect on cancer cell behavior remains unclear. In this study, we assayed for, and observed, an association between Galectin-9 expression and invasiveness of breast cancer cells in vitro and in vivo. Genetic perturbation and pharmacological inhibition using novel cognate inhibitors confirmed a positive correlation between Galectin-9 levels and the adhesion of invasive cancer cells to─and their invasion through─constituted organomimetic extracellular matrix microenvironments. Signaling experiments and unbiased quantitative proteomics revealed Galectin-9 induction of Focal Adhesion Kinase activity and S100A4 expression, respectively. FAK inhibition decreased S100A4 mRNA levels. Our results provide crucial insights into how elevated Galectin-9 expression potentiates the invasiveness of breast cancer cells during early steps of invasion.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/metabolismo , Matriz Extracelular/metabolismo , Feminino , Galectinas/genética , Galectinas/metabolismo , Humanos , Polissacarídeos/metabolismo , Transdução de Sinais , Microambiente Tumoral
17.
J Med Chem ; 65(8): 5975-5989, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35427125

RESUMO

Galectin-3 is a ß-galactoside-specific, carbohydrate-recognizing protein (lectin) that is strongly implicated in cancer development, metastasis, and drug resistance. Galectin-3 promotes migration and ability to withstand drug treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Due to high amino acid conservation among galectins and the shallow nature of their glycan-binding site, the design of selective potent antagonists targeting galectin-3 is challenging. Herein, we report the design and synthesis of novel taloside-based antagonists of galectin-3 with enhanced affinity and selectivity. The molecules were optimized by in silico docking, selectivity was established against four galectins, and the binding modes were confirmed by elucidation of X-ray crystal structures. Critically, the specific inhibition of galectin-3-induced BCP-ALL cell agglutination was demonstrated. The compounds decreased the viability of ALL cells even when grown in the presence of protective stromal cells. We conclude that these compounds are promising leads for therapeutics, targeting the tumor-supportive activities of galectin-3 in cancer.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Desenho de Fármacos , Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Humanos , Polissacarídeos/síntese química , Polissacarídeos/química , Polissacarídeos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
18.
Biol Cell ; 114(6): 160-176, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35304921

RESUMO

BACKGROUND INFORMATION: Like most other cell surface proteins, α5 ß1 integrin is glycosylated, which is required for its various activities in ways that mostly remain to be determined. RESULTS: Here, we have established the first comprehensive site-specific glycan map of α5 ß1 integrin that was purified from a natural source, that is, rat liver. This analysis revealed striking site selective variations in glycan composition. Complex bi, tri, or tetraantennary N-glycans were predominant at various proportions at most potential N-glycosylation sites. A few of these sites were nonglycosylated or contained high mannose or hybrid glycans, indicating that early N-glycan processing was hindered. Almost all complex N-glycans had fully galactosylated and sialylated antennae. Moderate levels of core fucosylation and high levels of O-acetylation of NeuAc residues were observed at certain sites. An O-linked HexNAc was found in an EGF-like domain of ß1 integrin. The extensive glycan information that results from our study was projected onto a map of α5 ß1 integrin that was obtained by homology modeling. We have used this model for the discussion of how glycosylation might be used in the functional cycle of α5 ß1 integrin. A striking example concerns the involvement of glycan-binding galectins in the regulation of the molecular homeostasis of glycoproteins at the cell surface through the formation of lattices or endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis. CONCLUSION: We expect that the glycoproteomics data of the current study will serve as a resource for the exploration of structural mechanisms by which glycans control α5 ß1 integrin activity and endocytic trafficking. SIGNIFICANCE: Glycosylation of α5 ß1 integrin has been implicated in multiple aspects of integrin function and structure. Yet, detailed knowledge of its glycosylation, notably the specific sites of glycosylation, is lacking. Furthermore, the α5 ß1 integrin preparation that was analyzed here is from a natural source, which is of importance as there is not a lot of literature in the field about the glycosylation of "native" glycoproteins.


Assuntos
Integrina alfa5 , Integrina beta1 , Polissacarídeos , Animais , Glicoproteínas/química , Glicosilação , Integrina alfa5/química , Integrina beta1/química , Fígado/metabolismo , Polissacarídeos/química , Ratos
19.
Chembiochem ; 23(5): e202100593, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978765

RESUMO

Galectin-1 is a ß-galactoside-binding lectin with manifold biological functions. A single tryptophan residue (W68) in its carbohydrate binding site plays a major role in ligand binding and is highly conserved among galectins. To fine tune galectin-1 specificity, we introduced several non-canonical tryptophan analogues at this position of human galectin-1 and analyzed the resulting variants using glycan microarrays. Two variants containing 7-azatryptophan and 7-fluorotryptophan showed a reduced affinity for 3'-sulfated oligosaccharides. Their interaction with different ligands was further analyzed by fluorescence polarization competition assay. Using molecular modeling we provide structural clues that the change in affinities comes from modulated interactions and solvation patterns. Thus, we show that the introduction of subtle atomic mutations in the ligand binding site of galectin-1 is an attractive approach for fine-tuning its interactions with different ligands.


Assuntos
Galectina 1 , Triptofano , Sítios de Ligação , Galectina 1/química , Galectinas/metabolismo , Humanos , Ligantes , Oligossacarídeos/química
20.
ChemMedChem ; 17(3): e202100514, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34613662

RESUMO

Galectin-8 has gained attention as a potential new pharmacological target for the treatment of various diseases, including cancer, inflammation, and disorders associated with bone mass reduction. To that end, new molecular probes are needed in order to better understand its role and its functions. Herein we aimed to improve the affinity and target selectivity of a recently published galectin-8 ligand, 3-O-[1-carboxyethyl]-ß-d-galactopyranoside, by introducing modifications at positions 1 and 3 of the galactose. Affinity data measured by fluorescence polarization show that the most potent compound reached a KD of 12 µM. Furthermore, reasonable selectivity versus other galectins was achieved, making the highlighted compound a promising lead for the development of new selective and potent ligands for galectin-8 as molecular probes to examine the protein's role in cell-based and in vivo studies.


Assuntos
Galectinas/metabolismo , Ácidos Murâmicos/farmacologia , Polarização de Fluorescência , Humanos , Ligantes , Estrutura Molecular , Ácidos Murâmicos/síntese química , Ácidos Murâmicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...