Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9518, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934614

RESUMO

The influence of single-walled carbon nanotubes enriched in semiconductor (S-SWNTs) and metallic (M-SWNTs) tubes on the photoluminescence (PL) of polyaniline (PANI), electrosynthesized in the presence of the H2SO4 and HCl solutions, is reported. The emission bands peaked at 407-418 and 440-520 nm indicate that the electropolymerization of aniline (ANI) leads to the formation of short and longer macromolecular chains (MCs), respectively. We demonstrate that the reaction product consists of ANI tetramers (TT) and trimers (TR) as well as PANI-salt. Using Raman scattering and IR absorption spectroscopy, a covalent functionalization of SWNTs with shorter and longer MCs of PANI-salt is demonstrated. The presence of S-SWNTs and M-SWNTs induces a decrease in ANI TT weight in the reaction product mass consisting in S-SWNTs and M-SWNTs covalently functionalized with PANI-emeraldine salt (ES) and PANI-leucoemeraldine salt (LS), respectively. A PANI PL quenching is reported to be induced of the S-SWNTs and M-SWNTs. A de-excitation mechanism is proposed to explain PANI PL quenching.

2.
Beilstein J Nanotechnol ; 6: 1138-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171290

RESUMO

The mechanisms that control the photophysics of composite films made of a semiconducting conjugated polymer (poly(paraphenylene vinylene), PPV) mixed with single-walled carbon nanotubes (SWNT) up to a concentration of 64 wt % are determined by using photoexcitation techniques and density functional theory. Charge separation is confirmed experimentally by rapid quenching of PPV photoluminescence and changes in photocurrent starting at relatively low concentrations of SWNT. Calculations predict strong electronic interaction between the polymer and the SWNT network when nanotubes are semiconducting.

3.
Langmuir ; 29(5): 1627-33, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23293950

RESUMO

This work presents a simple method to generate ordered chromophore/dispersant nanoarrays through a pore-filling process for a nanoporous polymer template to enhance chromophore luminescence. Fluorescence results combining with the morphological evolution examined by scanning probe microscopy reveal that the enhanced luminescence intensity reaches the maximum intensity as the nanopores of the template are completely filled by the chromophore/dispersant mixture. The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of chromophore and dispersant, that is, the alleviation of self-quenching problem, as evidenced by the results of attenuated total reflection Fourier transform IR spectroscopy combining with grazing incident wide-angle X-ray diffraction. The enhanced luminescence of the chromophore/dispersant nanoarrays driven by the nanoscale spatial effect is highly promising for use in designing luminescent nanodevices.


Assuntos
Luminescência , Nanoestruturas/química , Nanotecnologia , Polímeros/química , Pirenos/química , Medições Luminescentes , Tamanho da Partícula , Porosidade , Propriedades de Superfície
4.
J Am Chem Soc ; 133(42): 16938-46, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21923167

RESUMO

We present a systematic Raman study over a range of excitation energies of arc discharge single-walled carbon nanotubes (SWCNTs) covalently functionalized according to two processes, esterification and reductive alkylation. The SWCNTs are characterized by resonance Raman spectroscopy at each step of the functionalization process, showing changes in radial breathing mode frequencies and transition energies for both semiconducting and metallic tubes. Particular attention is given to a family of tubes clearly identified in the Kataura plot for which we continuously tune the excitation energy from 704 to 752 nm. This allows us to quantify the energy shift occurring in the spacing of the van Hove singularities. We demonstrate that, independently of the functionalization technique, the type of chain covalently bound to the tubes plays an important role, notably when oxygen atoms lie close to the tubes, inducing a larger shift in transition energy as compared to that of other carbonaceous chains. The study shows the complexity of interpreting Raman data and suggests many interpretations in the literature may need to be revisited.

5.
Phys Chem Chem Phys ; 10(27): 4027-35, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18597017

RESUMO

Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary spectroscopic, electrochemical and spectroelectrochemical investigations of both the functionalized poly(thiophene) and its composite with the nanocrystals, the latter being fabricated using the layer-by-layer (LbL) deposition technique. UV-Vis-NIR and Raman spectroelectrochemical investigations unequivocally show that the onset of the first anodic peak in the cyclic voltammogram of the copolymer can be attributed to the oxidation of the pi-conjugated backbone in the polymer chains. For this reason, it is possible to determine the width and the position of its band gap (corresponding to the pi-pi* transition) by UV-Vis spectroscopy combined with cyclic voltammetry. These studies show that the polymer exhibits a slightly larger band gap with the HOMO level insignificantly lower in energy (by 0.03 eV) as compared to the case of regioregular poly(3-hexylthiophene) of comparable degree of polymerization. Hydrogen bond interactions of the polymer with CdSe(MHT) in the molecular composite result in a hypsochromic shift of the band corresponding to the pi-pi* transition from 504 nm to 488 nm. This can be taken as a spectroscopic manifestation of the conformational changes induced by shortening of the conjugation length. The observed spectral modifications are consistent with electrochemically determined lowering of the polymer HOMO level (from -4.91 eV in the pure polymer to -4.99 eV in the composite). Cyclic voltammetry studies supported by spectroelectrochemistry also show that the redox stability of CdSe(MHT) in the molecular composite with P3HT-co-P3(ODAP)HT is lower than that determined for stearate-capped nanocrystals. Their irreversible oxidation starts at E = +0.7 V vs. Ag/0.1 M Ag(+)i.e. at potentials by ca. 0.3 V lower than the oxidation of stearate stabilized CdSe nanocrystals of the same size. We show that-despite these modifications-the alignment of the HOMO and LUMO levels of the composite components remains appropriate for its use in hybrid solar cells, which is demonstrated by the photovoltaic effect observed for the LbL-processed composite sandwiched between two electrodes.


Assuntos
Compostos de Cádmio/química , Eletroquímica/métodos , Nanopartículas , Nanotecnologia , Fotoquímica/métodos , Compostos de Selênio/química , Análise Espectral/métodos , Cristalização , Condutividade Elétrica , Ligação de Hidrogênio , Polímeros , Tiofenos/química
6.
J Nanosci Nanotechnol ; 4(7): 749-61, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15570957

RESUMO

In this paper, we describe a new method to the selective nanovolume analysing of one isolated single walled carbon nanotube (SWNT). This concept is based on actually available imaging micro-spectrometry systems for working in near-field domain combined with a stigmatic solid immersion lens. This combination of different analytical methods, and modified and configured equipment entitles us to expand the functionality toward a three-dimensional (3D) nanovolume Raman mapping and photoluminescence intensity with a possible discrimination in polarization, as well as photoluminescence decaytime constant mapping with their unique combination. Subsequently, selective spectra can be acquired from the same location on the samples. By spectrally selecting a SWNT, we registered the spatial distribution of the emitted photons in x, y, z vectors to determine the position of a SWNT in the near-field domain. For the SWNTs that are localized with an accuracy better than 18 nm in the x, y and <1 nm in the z directions, we demonstrate an analytical sensitivity close to a single nanotube with unity throughput. This near-field capability is applied to resolve local variations unambiguously in the Raman spectrum along one single SWNT. Finally, in this paper, we report what we believe to be the first evidence of Raman mapping and 3D real optical imaging of carbon nanotubes with near-field resolution.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Análise Espectral Raman/métodos , Processamento de Imagem Assistida por Computador , Luz , Luminescência , Medições Luminescentes , Microscopia Confocal , Microscopia de Varredura por Sonda/métodos , Modelos Teóricos , Nanotubos/química , Fótons , Espalhamento de Radiação , Sensibilidade e Especificidade , Software , Temperatura
7.
Philos Trans A Math Phys Eng Sci ; 362(1824): 2361-73, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15482983

RESUMO

Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.


Assuntos
Carbono/química , Nanotubos/química , Física/métodos , Análise Espectral Raman/métodos , Coloides/química , Fractais , Ouro/química , Espalhamento de Radiação , Prata/química
8.
Phys Rev Lett ; 89(25): 255501, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12484894

RESUMO

Bundles of single-wall carbon nanotubes (SWCNTs) coalesce forming multiwall carbon nanotubes (MWCNTs), containing from two to six nested tubes, under thermal treatment at high temperatures [(2200-2400) degrees C]. This structural transformation is confirmed by extensive molecular dynamics (MD) simulations. The simulations suggest a "patching-and-tearing" mechanism for the single-wall-to-multiwall transformation underlying the "concerted" coalescence of the tubes that begins with their polymerization. Tubes of different sizes and chiralities are considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...