Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(5): 3228-3250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501336

RESUMO

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.


Assuntos
Doença de Alzheimer , Encéfalo , Eletroencefalografia , Demência Frontotemporal , Humanos , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/patologia , Encéfalo/fisiopatologia , Encéfalo/patologia , Feminino , Doença de Alzheimer/fisiopatologia , Masculino , Idoso , Conectoma , Pessoa de Meia-Idade , Modelos Neurológicos
3.
Sci Data ; 10(1): 889, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071313

RESUMO

The Latin American Brain Health Institute (BrainLat) has released a unique multimodal neuroimaging dataset of 780 participants from Latin American. The dataset includes 530 patients with neurodegenerative diseases such as Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), multiple sclerosis (MS), Parkinson's disease (PD), and 250 healthy controls (HCs). This dataset (62.7 ± 9.5 years, age range 21-89 years) was collected through a multicentric effort across five Latin American countries to address the need for affordable, scalable, and available biomarkers in regions with larger inequities. The BrainLat is the first regional collection of clinical and cognitive assessments, anatomical magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), diffusion-weighted MRI (DWI), and high density resting-state electroencephalography (EEG) in dementia patients. In addition, it includes demographic information about harmonized recruitment and assessment protocols. The dataset is publicly available to encourage further research and development of tools and health applications for neurodegeneration based on multimodal neuroimaging, promoting the assessment of regional variability and inclusion of underrepresented participants in research.


Assuntos
Doença de Alzheimer , Encéfalo , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
4.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333384

RESUMO

Aging may diminish social cognition, which is crucial for interaction with others, and significant changes in this capacity can indicate pathological processes like dementia. However, the extent to which non-specific factors explain variability in social cognition performance, especially among older adults and in global settings, remains unknown. A computational approach assessed combined heterogeneous contributors to social cognition in a diverse sample of 1063 older adults from 9 countries. Support vector regressions predicted the performance in emotion recognition, mentalizing, and a total social cognition score from a combination of disparate factors, including clinical diagnosis (healthy controls, subjective cognitive complaints, mild cognitive impairment, Alzheimer's disease, behavioral variant frontotemporal dementia), demographics (sex, age, education, and country income as a proxy of socioeconomic status), cognition (cognitive and executive functions), structural brain reserve, and in-scanner motion artifacts. Cognitive and executive functions and educational level consistently emerged among the top predictors of social cognition across models. Such non-specific factors showed more substantial influence than diagnosis (dementia or cognitive decline) and brain reserve. Notably, age did not make a significant contribution when considering all predictors. While fMRI brain networks did not show predictive value, head movements significantly contributed to emotion recognition. Models explained between 28-44% of the variance in social cognition performance. Results challenge traditional interpretations of age-related decline, patient-control differences, and brain signatures of social cognition, emphasizing the role of heterogeneous factors. Findings advance our understanding of social cognition in brain health and disease, with implications for predictive models, assessments, and interventions.

5.
Neurobiol Dis ; 183: 106171, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257663

RESUMO

Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Parkinson , Humanos , Memória de Curto Prazo , Doença de Alzheimer/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos
6.
Cortex ; 163: 66-79, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075507

RESUMO

Disease-specific mechanisms underlying emotion recognition difficulties in behavioural-variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD) are unknown. Interoceptive accuracy, accurately detecting internal cues (e.g., one's heart beating), and cognitive abilities are candidate mechanisms underlying emotion recognition. One hundred and sixty-eight participants (52 bvFTD; 41 AD; 24 PD; 51 controls) were recruited. Emotion recognition was measured via the Facial Affect Selection Task or the Mini-Social and Emotional Assessment Emotion Recognition Task. Interoception was assessed with a heartbeat detection task. Participants pressed a button each time they: 1) felt their heartbeat (Interoception); or 2) heard a recorded heartbeat (Exteroception-control). Cognition was measured via the Addenbrooke's Cognitive Examination-III or the Montreal Cognitive Assessment. Voxel-based morphometry analyses identified neural correlates associated with emotion recognition and interoceptive accuracy. All patient groups showed worse emotion recognition and cognition than controls (all P's ≤ .008). Only the bvFTD showed worse interoceptive accuracy than controls (P < .001). Regression analyses revealed that in bvFTD worse interoceptive accuracy predicted worse emotion recognition (P = .008). Whereas worse cognition predicted worse emotion recognition overall (P < .001). Neuroimaging analyses revealed that the insula, orbitofrontal cortex, and amygdala were involved in emotion recognition and interoceptive accuracy in bvFTD. Here, we provide evidence for disease-specific mechanisms for emotion recognition difficulties. In bvFTD, emotion recognition impairment is driven by inaccurate perception of the internal milieu. Whereas, in AD and PD, cognitive impairment likely underlies emotion recognition deficits. The current study furthers our theoretical understanding of emotion and highlights the need for targeted interventions.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Interocepção , Doença de Parkinson , Humanos , Doença de Alzheimer/psicologia , Demência Frontotemporal/psicologia , Imageamento por Ressonância Magnética/métodos , Emoções , Cognição , Testes Neuropsicológicos
7.
Neurobiol Dis ; 179: 106047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841423

RESUMO

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Assuntos
Doença de Alzheimer , Encéfalo , Conectoma , Demência Frontotemporal , Vias Neurais , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Eletroencefalografia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Reprodutibilidade dos Testes , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
8.
Biol Psychiatry ; 92(1): 54-67, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491275

RESUMO

BACKGROUND: The predictive coding theory of allostatic-interoceptive load states that brain networks mediating autonomic regulation and interoceptive-exteroceptive balance regulate the internal milieu to anticipate future needs and environmental demands. These functions seem to be distinctly compromised in behavioral variant frontotemporal dementia (bvFTD), including alterations of the allostatic-interoceptive network (AIN). Here, we hypothesize that bvFTD is typified by an allostatic-interoceptive overload. METHODS: We assessed resting-state heartbeat evoked potential (rsHEP) modulation as well as its behavioral and multimodal neuroimaging correlates in patients with bvFTD relative to healthy control subjects and patients with Alzheimer's disease (N = 94). We measured 1) resting-state electroencephalography (to assess the rsHEP, prompted by visceral inputs and modulated by internal body sensing), 2) associations between rsHEP and its neural generators (source location), 3) cognitive disturbances (cognitive state, executive functions, facial emotion recognition), 4) brain atrophy, and 5) resting-state functional magnetic resonance imaging functional connectivity (AIN vs. control networks). RESULTS: Relative to healthy control subjects and patients with Alzheimer's disease, patients with bvFTD presented more negative rsHEP amplitudes with sources in critical hubs of the AIN (insula, amygdala, somatosensory cortex, hippocampus, anterior cingulate cortex). This exacerbated rsHEP modulation selectively predicted the patients' cognitive profile (including cognitive decline, executive dysfunction, and emotional impairments). In addition, increased rsHEP modulation in bvFTD was associated with decreased brain volume and connectivity of the AIN. Machine learning results confirmed AIN specificity in predicting the bvFTD group. CONCLUSIONS: Altogether, these results suggest that bvFTD may be characterized by an allostatic-interoceptive overload manifested in ongoing electrophysiological markers, brain atrophy, functional networks, and cognition.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Alzheimer/patologia , Atrofia/patologia , Encéfalo , Mapeamento Encefálico , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Humanos , Imageamento por Ressonância Magnética
9.
Eur J Neurosci ; 55(9-10): 2836-2850, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32965070

RESUMO

Hypertensive disease (HTD), a prominent risk factor for cardiovascular and cerebrovascular diseases, is characterized by elevated stress-proneness. Since stress levels are underpinned by both cardiac and neural factors, multidimensional insights are required to robustly understand their disruption in HTD. Yet, despite their crucial relevance, heart rate variability (HRV) and multimodal neurocognitive markers of stress in HTD remain controversial and unexplored respectively. To bridge this gap, we studied cardiodynamic as well as electrophysiological and neuroanatomical measures of stress in HTD patients and healthy controls. Both groups performed the Trier Social Stress Test (TSST), a validated stress-inducing task comprising a baseline and a mental stress period. During both stages, we assessed a sensitive HRV parameter (the low frequency/high frequency [LF/HF ratio]) and an online neurophysiological measure (the heartbeat-evoked potential [HEP]). Also, we obtained neuroanatomical data via voxel-based morphometry (VBM) for correlation with online markers. Relative to controls, HTD patients exhibited increased LF/HF ratio and greater HEP modulations during baseline, reduced changes between baseline and stress periods, and lack of significant stress-related HRV modulations associated with the grey matter volume of putative frontrostriatal regions. Briefly, HTD patients presented signs of stress-related autonomic imbalance, reflected in a potential basal stress overload and a lack of responsiveness to acute psychosocial stress, accompanied by neurophysiological and neuroanatomical alterations. These multimodal insights underscore the relevance of neurocognitive data for developing innovations in the characterization, prognosis and treatment of HTD and other conditions with autonomic imbalance. More generally, these findings may offer new insights into heart-brain interactions.


Assuntos
Sistema Nervoso Autônomo , Hipertensão , Sistema Nervoso Autônomo/fisiologia , Encéfalo , Cognição , Frequência Cardíaca/fisiologia , Humanos
10.
Brain ; 145(3): 1052-1068, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529034

RESUMO

Social feedback can selectively enhance learning in diverse domains. Relevant neurocognitive mechanisms have been studied mainly in healthy persons, yielding correlational findings. Neurodegenerative lesion models, coupled with multimodal brain measures, can complement standard approaches by revealing direct multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy participants as well as persons with behavioural variant frontotemporal dementia (n = 21), Parkinson's disease (n = 31) and Alzheimer's disease (n = 20). These conditions are typified by predominant deficits in social cognition, feedback-based learning and associative learning, respectively, although all three domains may be partly compromised in the other conditions. We combined a validated behavioural task with ongoing EEG signatures of implicit learning (medial frontal negativity) and offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to non-social feedback. In comparison with controls, this effect was specifically impaired in behavioural variant frontotemporal dementia and Parkinson's disease, while unspecific learning deficits (across social and non-social conditions) were observed in Alzheimer's disease. EEG results showed increased medial frontal negativity in healthy controls during social feedback and learning. Such a modulation was selectively disrupted in behavioural variant frontotemporal dementia. Neuroanatomical results revealed extended temporo-parietal and fronto-limbic correlates of socially reinforced learning, with specific temporo-parietal associations in behavioural variant frontotemporal dementia and predominantly fronto-limbic regions in Alzheimer's disease. In contrast, non-socially reinforced learning was consistently linked to medial temporal/hippocampal regions. No associations with cortical volume were found in Parkinson's disease. Results are consistent with core social deficits in behavioural variant frontotemporal dementia, subtle disruptions in ongoing feedback-mechanisms and social processes in Parkinson's disease and generalized learning alterations in Alzheimer's disease. This multimodal approach highlights the impact of different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of social learning, socially reinforced learning and neurodegeneration.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Alzheimer/patologia , Encéfalo/patologia , Demência Frontotemporal/patologia , Humanos , Doenças Neurodegenerativas/patologia , Doença de Parkinson/patologia
11.
Cereb Cortex ; 32(16): 3377-3391, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875690

RESUMO

Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Alzheimer/patologia , Atrofia/patologia , Biomarcadores , Encéfalo , Demência Frontotemporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/diagnóstico por imagem , Testes Neuropsicológicos
12.
J Neurosci ; 41(19): 4276-4292, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33827935

RESUMO

Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.


Assuntos
Emoções/fisiologia , Reconhecimento Facial , Interocepção/fisiologia , Degeneração Neural/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Mapeamento Encefálico , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Desempenho Psicomotor/fisiologia
13.
Brain Commun ; 2(2): fcaa095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954340

RESUMO

Heart-brain integration dynamics are critical for interoception (i.e. the sensing of body signals). In this unprecedented longitudinal study, we assessed neurocognitive markers of interoception in patients who underwent orthotopic heart transplants and matched healthy controls. Patients were assessed longitudinally before surgery (T1), a few months later (T2) and a year after (T3). We assessed behavioural (heartbeat detection) and electrophysiological (heartbeat evoked potential) markers of interoception. Heartbeat detection task revealed that pre-surgery (T1) interoception was similar between patients and controls. However, patients were outperformed by controls after heart transplant (T2), but no such differences were observed in the follow-up analysis (T3). Neurophysiologically, although heartbeat evoked potential analyses revealed no differences between groups before the surgery (T1), reduced amplitudes of this event-related potential were found for the patients in the two post-transplant stages (T2, T3). All these significant effects persisted after covariation with different cardiological measures. In sum, this study brings new insights into the adaptive properties of brain-heart pathways.

14.
Sci Rep ; 10(1): 14131, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839479

RESUMO

The mechanisms underlying emotional alterations constitute a key research target in neuroscience. Emerging evidence indicates that these disruptions can be related to abnormal interoception (i.e., the sensing of visceral feelings), as observed in patients with cardiodynamic deficits. To directly assess these links, we performed the first multicenter study on emotion recognition and interoception in patients with hypertensive heart disease (HHD). Participants from two countries completed a facial emotion recognition test, and a subsample additionally underwent an interoception protocol based on a validated heartbeat detection task. HHD patients from both countries presented deficits in the recognition of overall and negative emotions. Moreover, interoceptive performance was impaired in the HHD group. In addition, a significant association between interoceptive performance and emotion recognition was observed in the control group, but this relation was abolished in the HHD group. All results survived after covariance with cognitive status measures, suggesting they were not biased by general cognitive deficits in the patients. Taken together, these findings suggest that emotional recognition alterations could represent a sui generis deficit in HHD, and that it may be partially explained by the disruption of mechanisms subserving the integration of neuro-visceral signals.


Assuntos
Emoções/fisiologia , Cardiopatias/psicologia , Hipertensão/psicologia , Interocepção/fisiologia , Regulação Emocional/fisiologia , Expressão Facial , Feminino , Cardiopatias/patologia , Humanos , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade
15.
Hum Brain Mapp ; 39(12): 4743-4754, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076770

RESUMO

Multiple sclerosis (MS) patients present several alterations related to sensing of bodily signals. However, no specific neurocognitive impairment has yet been proposed as a core deficit underlying such symptoms. We aimed to determine whether MS patients present changes in interoception-that is, the monitoring of autonomic bodily information-a process that might be related to various bodily dysfunctions. We performed two studies in 34 relapsing-remitting, early-stage MS patients and 46 controls matched for gender, age, and education. In Study 1, we evaluated the heartbeat-evoked potential (HEP), a cortical signature of interoception, via a 128-channel EEG system during a heartbeat detection task including an exteroceptive and an interoceptive condition. Then, we obtained whole-brain MRI recordings. In Study 2, participants underwent fMRI recordings during two resting-state conditions: mind wandering and interoception. In Study 1, controls exhibited greater HEP modulation during the interoceptive condition than the exteroceptive one, but no systematic differences between conditions emerged in MS patients. Patients presented atrophy in the left insula, the posterior part of the right insula, and the right anterior cingulate cortex, with abnormal associations between neurophysiological and neuroanatomical patterns. In Study 2, controls showed higher functional connectivity and degree for the interoceptive state compared with mind wandering; however, this pattern was absent in patients, who nonetheless presented greater connectivity and degree than controls during mind wandering. MS patients were characterized by atypical multimodal brain signatures of interoception. This finding opens a new agenda to examine the role of inner-signal monitoring in the body symptomatology of MS.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Frequência Cardíaca/fisiologia , Interocepção/fisiologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Adulto , Atrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia
16.
Cortex ; 100: 111-126, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28764852

RESUMO

The linguistic profile of Parkinson's disease (PD) is characterized by difficulties in processing units which denote bodily movements. However, the available evidence has low ecological validity, as it stems from atomistic tasks which are never encountered in real life. Here, we assessed whether such deficits also occur for meanings evoked by context-rich narratives, considering patients with and without mild cognitive impairment (PD-MCI and PD-nMCI, respectively) and matched controls for each group. Participants read two naturalistic stories (an action text and a neutral text) and responded to questions tapping the appraisal of verb-related and circumstantial information. In PD-MCI, impairments in the appraisal of action meanings emerged alongside difficulties in other categories, but they were unique in their independence from general cognitive dysfunction. However, in PD-nMCI, deficits were observed only for action meanings, irrespective of the patients' domain-general skills (executive functions and general cognitive state). Also, using multiple group discriminant function analyses, we found that appraisal of action meanings was the only discourse-level variable that robustly contributed to classifying PD-MCI patients from controls (with an accuracy of 88% for all participants and for each sample separately). Moreover, this variable actually superseded a sensitive executive battery in discriminating between PD-nMCI and controls (with a combined accuracy of 83% for all participants, correctly classifying 79.2% of patients and 87.5% of controls). In sum, action appraisal deficits seem to constitute both a hallmark of naturalistic discourse processing in PD and a sensitive subject-level marker for patients with and without MCI. Such findings highlight the relevance of ecological measures of embodied cognitive functions in the assessment of this population.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Função Executiva/fisiologia , Doença de Parkinson/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
17.
Hum Brain Mapp ; 39(4): 1563-1581, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271093

RESUMO

Interoception, the sensing of visceral body signals, involves an interplay between neural and autonomic mechanisms. Clinical studies into this domain have focused on patients with neurological and psychiatric disorders, showing that damage to relevant brain mechanisms can variously alter interoceptive functions. However, the association between peripheral cardiac-system alterations and neurocognitive markers of interoception remains poorly understood. To bridge this gap, we examined multidimensional neural markers of interoception in patients with early stage of hypertensive disease (HTD) and healthy controls. Strategically, we recruited only HTD patients without cognitive impairment (as shown by neuropsychological tests), brain atrophy (as assessed with voxel-based morphometry), or white matter abnormalities (as evidenced by diffusion tensor imaging analysis). Interoceptive domains were assessed through (a) a behavioral heartbeat detection task; (b) measures of the heart-evoked potential (HEP), an electrophysiological cortical signature of attention to cardiac signals; and (c) neuroimaging recordings (MRI and fMRI) to evaluate anatomical and functional connectivity properties of key interoceptive regions (namely, the insula and the anterior cingulate cortex). Relative to controls, patients exhibited poorer interoceptive performance and reduced HEP modulations, alongside an abnormal association between interoceptive performance and both the volume and functional connectivity of the above regions. Such results suggest that peripheral cardiac-system impairments can be associated with abnormal behavioral and neurocognitive signatures of interoception. More generally, our findings indicate that interoceptive processes entail bidirectional influences between the cardiovascular and the central nervous systems.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Hipertensão/diagnóstico por imagem , Hipertensão/fisiopatologia , Interocepção , Idoso , Encéfalo/patologia , Imagem de Tensor de Difusão , Eletroencefalografia , Potenciais Evocados , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Coração/fisiopatologia , Humanos , Interocepção/fisiologia , Imageamento por Ressonância Magnética , Masculino , Análise Multinível , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Tamanho do Órgão
18.
Neurosci Biobehav Rev ; 80: 673-687, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780312

RESUMO

Within the language domain, movement disorders triggered by frontostriatal damage are characterized by deficits in action verbs, motor-language coupling, and syntax. However, these impairments have not been jointly interpreted under a unifying rationale or integratively assessed in terms of possible clinical implications. To bridge these gaps, here we introduce the "disrupted motor grounding hypothesis", a new framework to conceive such impairments as disturbances of embodied mechanisms (high-order domains based on the recycling of functionally germane sensorimotor circuits). We focus on two relevant lesion models: Parkinson's and Huntington's disease. First, we describe the physiopathology of both conditions as models of progressive frontostriatal impairment. Then, we summarize works assessing action language, motor-language coupling, and syntax in samples at early and preclinical disease stages. To conclude, we discuss the implications of the evidence for neurolinguistic modeling, identify key issues to be addressed in future research, and discuss potential clinical implications. In brief, our work seeks to open new theoretical and translational avenues for embodied cognition research.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Doença de Huntington/psicologia , Idioma , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Atrofia , Encéfalo/fisiopatologia , Humanos , Doença de Huntington/fisiopatologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia
19.
Front Neurosci ; 11: 411, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769749

RESUMO

Interoception, the monitoring of visceral signals, is often presumed to engage attentional mechanisms specifically devoted to inner bodily sensing. In fact, most standardized interoceptive tasks require directing attention to internal signals. However, most studies in the field have failed to compare attentional modulations between internally- and externally-driven processes, thus probing blind to the specificity of the former. Here we address this issue through a multidimensional approach combining behavioral measures, analyses of event-related potentials and functional connectivity via high-density electroencephalography, and intracranial recordings. In Study 1, 50 healthy volunteers performed a heartbeat detection task as we recorded modulations of the heartbeat-evoked potential (HEP) in three conditions: exteroception, basal interoception (also termed interoceptive accuracy), and post-feedback interoception (sometimes called interoceptive learning). In Study 2, to evaluate whether key interoceptive areas (posterior insula, inferior frontal gyrus, amygdala, and somatosensory cortex) were differentially modulated by externally- and internally-driven processes, we analyzed human intracranial recordings with depth electrodes in these regions. This unique technique provides a very fine grained spatio-temporal resolution compared to other techniques, such as EEG or fMRI. We found that both interoceptive conditions in Study 1 yielded greater HEP amplitudes than the exteroceptive one. In addition, connectivity analysis showed that post-feedback interoception, relative to basal interoception, involved enhanced long-distance connections linking frontal and posterior regions. Moreover, results from Study 2 showed a differentiation between oscillations during basal interoception (broadband: 35-110 Hz) and exteroception (1-35 Hz) in the insula, the amygdala, the somatosensory cortex, and the inferior frontal gyrus. In sum, this work provides convergent evidence for the specificity and dynamics of attentional mechanisms involved in interoception.

20.
Front Aging Neurosci ; 9: 178, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642698

RESUMO

Recent works evince the critical role of visual short-term memory (STM) binding deficits as a clinical and preclinical marker of Alzheimer's disease (AD). These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer's patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC) might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a) the usefulness of the task to target prodromal stages of AD; (b) the role of a posterior network in STM binding and in AD; and

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...