Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 49(D1): D605-D612, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237311

RESUMO

Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein-protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Proteínas/genética , Interface Usuário-Computador
3.
F1000Res ; 9: 157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399202

RESUMO

Cytoscape is an open-source software used to analyze and visualize biological networks. In addition to being able to import networks from a variety of sources, Cytoscape allows users to import tabular node data and visualize it onto networks. Unfortunately, such data tables can only contain one row of data per node, whereas omics data often have multiple rows for the same gene or protein, representing different post-translational modification sites, peptides, splice isoforms, or conditions. Here, we present a new app, Omics Visualizer, that allows users to import data tables with several rows referring to the same node, connect them to one or more networks, and visualize the connected data onto networks. Omics Visualizer uses the Cytoscape enhancedGraphics app to show the data either in the nodes (pie visualization) or around the nodes (donut visualization), where the colors of the slices represent the imported values. If the user does not provide a network, the app can retrieve one from the STRING database using the Cytoscape stringApp. The Omics Visualizer app is freely available at https://apps.cytoscape.org/apps/omicsvisualizer.


Assuntos
Biologia Computacional/métodos , Visualização de Dados , Software , Proteômica
4.
BMC Syst Biol ; 12(Suppl 5): 95, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458828

RESUMO

BACKGROUND: Systems biology aims to analyse regulation mechanisms into the cell. By mapping interactions observed in different situations, differential network analysis has shown its power to reveal specific cellular responses or specific dysfunctional regulations. In this work, we propose to explore on a large scale the role of natural anti-sense transcription on gene regulation mechanisms, and we focus our study on apple (Malus domestica) in the context of fruit ripening in cold storage. RESULTS: We present a differential functional analysis of the sense and anti-sense transcriptomic data that reveals functional terms linked to the ripening process. To develop our differential network analysis, we introduce our inference method of an Extended Core Network; this method is inspired by C3NET, but extends the notion of significant interactions. By comparing two extended core networks, one inferred with sense data and the other one inferred with sense and anti-sense data, our differential analysis is first performed on a local view and reveals AS-impacted genes, genes that have important interactions impacted by anti-sense transcription. The motifs surrounding AS-impacted genes gather transcripts with functions mostly consistent with the biological context of the data used and the method allows us to identify new actors involved in ripening and cold acclimation pathways and to decipher their interactions. Then from a more global view, we compute minimal sub-networks that connect the AS-impacted genes using Steiner trees. Those Steiner trees allow us to study the rewiring of the AS-impacted genes in the network with anti-sense actors. CONCLUSION: Anti-sense transcription is usually ignored in transcriptomic studies. The large-scale differential analysis of apple data that we propose reveals that anti-sense regulation may have an important impact in several cellular stress response mechanisms. Our data mining process enables to highlight specific interactions that deserve further experimental investigations.


Assuntos
Elementos Antissenso (Genética)/fisiologia , Regulação da Expressão Gênica de Plantas , Malus/genética , Desenvolvimento Vegetal/genética , Biologia de Sistemas/métodos , Mineração de Dados/métodos , Frutas/genética , Frutas/crescimento & desenvolvimento , Redes Reguladoras de Genes , Malus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...