Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 408(30): 8761-8770, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27040532

RESUMO

Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.


Assuntos
Técnicas Biossensoriais/instrumentação , Cádmio/análise , Medições Luminescentes/estatística & dados numéricos , Modelos Biológicos , Poluentes Químicos da Água/análise , Aliivibrio fischeri/química , Aliivibrio fischeri/enzimologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Células Imobilizadas , Simulação por Computador , Monitoramento Ambiental/instrumentação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Oxigênio/química , Sefarose , Transgenes
2.
Environ Technol ; 34(17-20): 2553-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24527616

RESUMO

The role of natural compounds of seawater and added particles on mechanisms of membrane fouling and organic matter rejection has been investigated. Ultrafiltration (100 kDa) has been conducted in both dead-end (out/in) and tangential (in/out) modes on polysulfone hollow fibre membranes. The permeate fluxes are approximately three times higher for tangential ultrafiltration than for dead-end ultrafiltration without differences between settled and non-settled seawaters (NS-SWs) (51-55 L h(-1) m(-2) for tangential and 17-22 L h(-1) m(-2) for dead-end ultrafiltration). Adding bentonite or kieselguhr from 0.13 to 1.13 g L(-1) of suspended solids to NS-SW does not act significantly on permeate fluxes of dead-end contrary to tangential ultrafiltration. For the latter, an addition of particles induces a slight drop of permeate fluxes. Original particles of reconstituted seawater could increase the cake porosity, whereas bentonite and kieselguhr, compounds smaller than original particles, could participate in the formation of a compact cake. The total organic carbon removal was equal to approximately 80% whatever the mode of ultrafiltration may be and the suspended solid concentration ranged from 0.13 to 1.13 g L(-1). Dissolved organic carbon (DOC) and colloidal organic carbon rejection rates were greater for tangential ultrafiltration (37-49%) compared with dead-end ultrafiltration (30-44%) at different concentrations of added particles. Bentonite or kieselguhr addition induced a slight decrease of DOC removal. In the case of particles addition, the worst DOC rejection is found for bentonite.


Assuntos
Carbono/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Água do Mar/análise , Ultrafiltração/instrumentação , Purificação da Água/instrumentação , Adsorção , Bentonita/química , Terra de Diatomáceas/química , Membranas Artificiais , Tamanho da Partícula , Permeabilidade , Polímeros/química , Porosidade , Sulfonas/química
3.
Biotechnol Bioeng ; 84(5): 544-51, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14574688

RESUMO

Light is the main limiting factor in photoautotrophic-intensive production of microorganisms, and improvement of its use is an important concern for photobioreactor design and operation. Swirling flows, which are known to improve mass and photon transfers, were applied to annular light chambers of a photobioreactor and studied by simulation and microalgal culture. Two hydrodynamic conditions were compared: axial flow generating poor radial mixing, and tangential flow generating three-dimensional swirling motion. Batch and continuous cultures of the Rhodophyte Porphyridium cruentum were performed in a 100-L, 1.5-m(2), fully controlled photobioreactor with eight light chambers. The inlet design of these chambers was modified to create the hydrodynamic conditions for comparison. Various intensities of swirling motion were used, characterized by the velocity factor (VF), defined as the ratio between annular chamber flow and inlet aperture sections. Experiments were performed within the range of photon flux densities (PFD) optimizing the yield of light energy transformation into living substance for the species and the temperature used. Culture kinetics with swirling flows generated by apertures of VF = 2, 4, and 9 were compared with pseudoaxial VF = 2 chosen as reference. Batch cultures with VF = 4 swirling flow showed no significant difference, whereas continuous cultures proved more discriminating. Although no significant difference was obtained for VF = 2, a 7% increase of steady-state productivity and a 26% decrease in time required to reach this steady state were obtained with VF = 4 swirling flow. This beneficial effect of swirling flow could have accounted for increased mixing. Conversely, VF = 9 swirling flow resulted in a 9% decrease of steady-state productivity and a 9% increase in the time required to reach this steady state, a negative effect that could have accounted for increased shear stress. CO(2) bioconversion yield at steady state showed a 34% increase for VF = 4. These results suggest that swirling motion makes microalgal cultures more efficient, provided that the resulting adverse effects remain acceptable. Experimental investigation was completed by a theoretical approach in which simulation of continuous cultures of P. cruentum was based on the hydrodynamic conditions achieved in the photobioreactor. Although the results obtained with pseudoaxial flow were correctly predicted, simulations with swirling flow showed a marked enhancement of productivity not observed experimentally. The influence of side effects induced by increased mixing (particularly hydrodynamic shear stress) was considered with respect to modeling assumptions. Comparison of experimental results with theoretical simulation provided a better understanding of the mixing effect, a key factor in improving the efficiency of such bioprocesses.


Assuntos
Reatores Biológicos/microbiologia , Dióxido de Carbono/metabolismo , Técnicas de Cultura de Células/métodos , Movimento Celular/fisiologia , Modelos Biológicos , Fotobiologia/métodos , Rodófitas/crescimento & desenvolvimento , Rodófitas/metabolismo , Técnicas de Cultura de Células/instrumentação , Simulação por Computador , Movimento (Física) , Fotobiologia/instrumentação , Reologia/instrumentação , Reologia/métodos , Rodófitas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA