Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 18(4): 3187-3198, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230651

RESUMO

Metasurfaces, optics made from subwavelength-scale nanostructures, have been limited to millimeter-sizes by the scaling challenge of producing vast numbers of precisely engineered elements over a large area. In this study, we demonstrate an all-glass 100 mm diameter metasurface lens (metalens) comprising 18.7 billion nanostructures that operates in the visible spectrum with a fast f-number (f/1.5, NA = 0.32) using deep-ultraviolet (DUV) projection lithography. Our work overcomes the exposure area constraints of lithography tools and demonstrates that large metasurfaces are commercially feasible. Additionally, we investigate the impact of various fabrication errors on the imaging quality of the metalens, several of which are specific to such large area metasurfaces. We demonstrate direct astronomical imaging of the Sun, the Moon, and emission nebulae at visible wavelengths and validate the robustness of such metasurfaces under extreme environmental thermal swings for space applications.

3.
J Phys Chem Lett ; 10(8): 1833-1839, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30925052

RESUMO

Developing interfacial probes of ligand-nanocluster interactions is crucial for understanding and tailoring the optoelectronic properties of these emerging nanomaterials. Using transient IR spectroscopy, we demonstrate that ligand vibrational modes of oleate-capped 1.3 nm InP nanoclusters report on the photogenerated exciton. The exciton induces an intensity change in the asymmetric carboxylate stretching mode by 57% while generating no appreciable shift in frequency. Thus, the observed difference signal is attributed to an exciton-induced change in the dipole magnitude of the asymmetric carboxylate stretching mode. Additionally, the transient IR data reveal that the infrared dipole change is dependent on the geometry of the ligand bound to the nanocluster. The experimental results are interpreted using TDDFT calculations, which identify how the spatial dependence of an exciton-induced electron density shift affects the vibrational motion of the carboxylate anchors. More broadly, this work demonstrates transient IR spectroscopy as a useful method for characterizing ligand-nanocluster coupling interactions.

4.
J Chem Phys ; 145(15): 154201, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27782494

RESUMO

Fifth-order multidimensional infrared spectroscopy with heterodyned detection was carried out in the three-beam dual-frequency configuration. Numerous 5th-order cross peaks were detected for the 4-azidobutyrate-N-hydroxysuccinimide ester compound in solution involving several vibrational modes ranging in frequency from 1045 to 2100 cm-1. Cross peaks involving overtones (2X/Z) and combination bands (XY/Z) among the tags, modes X and Y excited by the first two mid-IR laser pulses, and the reporter, modes Z excited by the third laser pulse, were acquired and the factors affecting the amplitude of 5th-order cross peaks are discussed. The 5th-order cross peaks were detected among modes that are spatially close (a few bonds apart) as well as for modes spatially separated by ca. 12 Å (eight bonds apart). In both cases, the waiting time dependences for the 3rd and 5th order cross peaks were found to be different. In particular, the waiting time at which the cross-peak maximum is reached, the decay time, and the value of a plateau at large waiting times were all differing strongly. The differences are explained by reduced sensitivity of the 5th-order signals to modes coupled weakly to the reporter mode and different relaxation dynamics involving overtone state of the tag. The ability of the 5th-order peaks to single out the modes coupled strongly to the reporter can help identifying specific energy relaxation and transport pathways, which will be useful for understanding energy transport dynamics in molecules. The absorptive 5th-order cross peaks were constructed which report on three-point correlation functions. It is shown that in addition to the triple-frequency correlation functions, a correlation of the frequencies with the mode coupling (anharmonicity) can be naturally measured by the 5th-order spectroscopy. The current limit for detecting 5th-order signals was estimated at the level of 1 × 10-3 in reduced anharmonicity, which is determined by the corresponding two-state anharmonicity divided by the reporter mode spectral width. Given the simplicity of recording the 5th-order cross peaks in the three-beam configuration, the approach carries a potential for a broad use.

5.
Rev Sci Instrum ; 85(8): 083109, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173248

RESUMO

A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm(-1) to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ~70 as. The anharmonicity of smaller than 10(-4) cm(-1) was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 µrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

6.
Opt Express ; 22(6): 6801-9, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664028

RESUMO

A compact laser beam direction stabilization scheme is developed that provides the angular stability of better than 50 µrad over a wide range of frequencies from 800 to 4000 cm-1. The schematic is fully automated and features a single MCT quadrant detector. The schematic was tested to stabilize directions of the two IR beams used for dual-frequency two-dimensional infrared (2DIR) measurements and showed excellent results: automatic tuning of the beam direction allowed achieving the alignment quality within 10% of the optimal alignment obtained manually. The schematic can be easily implemented to any nonlinear spectroscopic measurements in the mid-IR spectral region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...