Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38063495

RESUMO

The impact of host diversity on the genotypic and phenotypic evolution of broad-spectrum pathogens is an open issue. Here, we used populations of the plant pathogen Ralstonia pseudosolanacearum that were experimentally evolved on five types of host plants, either belonging to different botanical families or differing in their susceptibility or resistance to the pathogen. We investigated whether changes in transcriptomic profiles, associated with or independent of genetic changes, could occur during the process of host adaptation, and whether transcriptomic reprogramming was dependent on host type. Genomic and transcriptomic variations were established for 31 evolved clones that showed better fitness in their experimental host than the ancestral clone. Few genomic polymorphisms were detected in these clones, but significant transcriptomic variations were observed, with a large number of differentially expressed genes (DEGs). In a very clear way, a group of genes belonging to the network of regulation of the bacterial virulence such as efpR, efpH or hrpB, among others, were deregulated in several independent evolutionary lineages and appeared to play a key role in the transcriptomic rewiring observed in evolved clones. A double hierarchical clustering based on the 400 top DEGs for each clone revealed 2 major patterns of gene deregulation that depend on host genotype, but not on host susceptibility or resistance to the pathogen. This work therefore highlights the existence of two major evolutionary paths that result in a significant reorganization of gene expression during adaptive evolution and underscore clusters of co-regulated genes associated with bacterial adaptation on different host lines.


Assuntos
Ralstonia solanacearum , Humanos , Virulência/genética , Ralstonia solanacearum/genética , Ralstonia/genética , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233296

RESUMO

In bacteria, DNA-methyltransferase are responsible for DNA methylation of specific motifs in the genome. This methylation usually occurs at a very high rate. In the present study, we studied the MTases encoding genes found in the entomopathogenic bacteria Xenorhabdus. Only one persistent MTase was identified in the various species of this genus. This MTase, also broadly conserved in numerous Gram-negative bacteria, is called Dam: DNA-adenine MTase. Methylome analysis confirmed that the GATC motifs recognized by Dam were methylated at a rate of >99% in the studied strains. The observed enrichment of unmethylated motifs in putative promoter regions of the X. nematophila F1 strain suggests the possibility of epigenetic regulations. The overexpression of the Dam MTase responsible for additional motifs to be methylated was associated with impairment of two major phenotypes: motility, caused by a downregulation of flagellar genes, and hemolysis. However, our results suggest that dam overexpression did not modify the virulence properties of X. nematophila. This study increases the knowledge on the diverse roles played by MTases in bacteria.


Assuntos
DNA Metiltransferases Sítio Específica (Adenina-Específica) , Xenorhabdus , Adenina , DNA , Metilação de DNA , Metilases de Modificação do DNA/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Xenorhabdus/genética
3.
Plant Cell Environ ; 45(10): 3100-3121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781677

RESUMO

Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.


Assuntos
Medicago truncatula , Rhizobium , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Rhizobium/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma/genética
4.
Mol Biol Evol ; 38(5): 1792-1808, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33306125

RESUMO

The evolutionary and adaptive potential of a pathogen is a key determinant for successful host colonization and proliferation but remains poorly known for most of the pathogens. Here, we used experimental evolution combined with phenotyping, genomics, and transcriptomics to estimate the adaptive potential of the bacterial plant pathogen Ralstonia solanacearum to overcome the quantitative resistance of the tomato cultivar Hawaii 7996. After serial passaging over 300 generations, we observed pathogen adaptation to within-plant environment of the resistant cultivar but no plant resistance breakdown. Genomic sequence analysis of the adapted clones revealed few genetic alterations, but we provide evidence that all but one were gain of function mutations. Transcriptomic analyses revealed that even if different adaptive events occurred in independently evolved clones, there is convergence toward a global rewiring of the virulence regulatory network as evidenced by largely overlapping gene expression profiles. A subset of four transcription regulators, including HrpB, the activator of the type 3 secretion system regulon and EfpR, a global regulator of virulence and metabolic functions, emerged as key nodes of this regulatory network that are frequently targeted to redirect the pathogen's physiology and improve its fitness in adverse conditions. Significant transcriptomic variations were also detected in evolved clones showing no genomic polymorphism, suggesting that epigenetic modifications regulate expression of some of the virulence network components and play a major role in adaptation as well.


Assuntos
Adaptação Biológica/genética , Ralstonia solanacearum/genética , Regulon , Evolução Biológica , Mutação com Ganho de Função , Aptidão Genética , Solanum lycopersicum/microbiologia , Ralstonia solanacearum/patogenicidade , Transcriptoma
5.
Curr Biol ; 30(20): 3897-3907.e4, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32795448

RESUMO

Mating types are self-incompatibility systems that promote outcrossing in plants, fungi, and oomycetes. Mating-type genes have been widely studied in plants and fungi but have yet to be identified in oomycetes, eukaryotic organisms closely related to brown algae that cause many destructive animal and plant diseases. We identified the mating-type locus of Plasmopara viticola, the oomycete responsible for grapevine downy mildew, one of the most damaging grapevine diseases worldwide. Using a genome-wide association approach, we identified a 570-kb repeat-rich non-recombining region controlling mating types, with two highly divergent alleles. We showed that one mating type was homozygous, whereas the other was heterozygous at this locus. The mating-type locus encompassed 40 genes, including one encoding a putative hormone receptor. Functional studies will, however, be required to validate the function of these genes and find the actual determinants of mating type. Our findings have fundamental implications for our understanding of the evolution of mating types, as they reveal a unique determinism involving an asymmetry of heterozygosity, as in sex chromosomes and unlike other mating-type systems. This identification of the mating-type locus in such an economically important crop pathogen also has applied implications, as outcrossing facilitates rapid evolution and resistance to harsh environmental conditions.


Assuntos
Oomicetos/genética , Oomicetos/fisiologia , Reprodução/genética , Reprodução/fisiologia , Diferenciação Sexual/genética , Genoma de Protozoário/genética , Estudo de Associação Genômica Ampla , Fenótipo , Fatores de Transcrição/genética , Vitis/parasitologia
6.
PLoS One ; 14(7): e0220184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31356604

RESUMO

Plasmopara viticola is a biotrophic oomycete pathogen causing grapevine downy mildew. We characterized the repertoire of P. viticola effector proteins which may be translocated into plants to support the disease. We found several secreted proteins that contain canonical dEER motifs and conserved WY-domains but lack the characteristic RXLR motif reported previously from oomycete effectors. We cloned four candidates and showed that one of them, Pv33, induces plant cell death in grapevine and Nicotiana species. This activity is dependent on the nuclear localization of the protein. Sequence similar effectors were present in seven European, but in none of the tested American isolates. Together our work contributes a new type of conserved P. viticola effector candidates.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nicotiana/microbiologia , Peronospora/isolamento & purificação , Vitis/microbiologia , Morte Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Europa (Continente) , Evolução Molecular , Proteínas Fúngicas/química , Interações Hospedeiro-Patógeno , Peronospora/classificação , Peronospora/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Domínios Proteicos , Análise de Sequência de Proteína , Especificidade da Espécie , Estados Unidos
7.
Fungal Genet Biol ; 130: 122-133, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31175938

RESUMO

Changes in the mode of reproduction are frequently observed in invasive fungal populations. The ascomycete Cryphonectria parasitica, which causes Chestnut Blight, was introduced to Europe from North America and Asia in the 20th century. Previous genotyping studies based on ten microsatellite markers have identified several clonal lineages which have spread throughout western Europe, suggesting that asexuality was the main reproductive mode of this species during colonization, although occasional sexual reproduction is not excluded. Based on the whole-genome sequences alignment of 46 C. parasitica isolates from France, North America and Asia, genealogy and population structure analyses mostly confirmed these lineages as clonal. However, one of these clonal lineages showed a signal of strong recombination, suggesting different strategies of reproduction in western Europe. Signatures of several recent recombination events within all the French clonal lineages studied here were also identified, indicating that gene flow is regular between these lineages. In addition, haplotype identification of seven French clonal lineages revealed that emergences of new clonal lineages during colonization were the result of hybridization between the main expanding clonal lineages and minor haplotypes non-sequenced in the present study. This whole-genome sequencing study underlines the importance of recombination events in the invasive success of these clonal populations, and suggests that sexual reproduction may be more frequent within and between the western European clonal lineages of C. parasitica than previously assumed using few genetic markers.


Assuntos
Ascomicetos/genética , Ascomicetos/isolamento & purificação , Recombinação Genética , Sequenciamento Completo do Genoma , Ásia , DNA Fúngico , Europa (Continente) , Proteínas Fúngicas/genética , Fluxo Gênico , Genes Fúngicos Tipo Acasalamento , Marcadores Genéticos , Genoma Fúngico/genética , Genótipo , Haplótipos , Repetições de Microssatélites , América do Norte , Polimorfismo de Nucleotídeo Único
8.
Genomics ; 111(6): 1629-1640, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30447277

RESUMO

Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.


Assuntos
Bases de Dados Genéticas , Genoma Mitocondrial , Genoma de Protozoário , Redes e Vias Metabólicas/fisiologia , Filogenia , Plasmodioforídeos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Plasmodioforídeos/genética , Plasmodioforídeos/metabolismo
9.
Plant J ; 97(4): 730-748, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422341

RESUMO

Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad-spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern-triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad-spectrum resistant lines. HR triggered by PhRXLRC01 co-segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad-spectrum resistance gene identification in complex crop genomes such as sunflower.


Assuntos
Helianthus/metabolismo , Helianthus/microbiologia , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Resistência à Doença/fisiologia , Genótipo , Virulência/genética , Virulência/fisiologia
10.
Sci Rep ; 8(1): 12091, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108278

RESUMO

DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of methylation (>94%) were identified. The methylome was strikingly stable over course of growth, but also in a subpopulation responsible for a critical step in the bacterium's lifecycle: successful survival and proliferation in insects. The rare unmethylated GATC motifs were preferentially located in putative promoter regions, and most of them were methylated after Dam methyltransferase overexpression, suggesting that DNA methylation is involved in gene regulation. Our findings bring key insight into bacterial methylomes and encourage further research to decipher the role of loci protected from DNA methylation in gene regulation.


Assuntos
Adenina/metabolismo , Metilação de DNA , Regulação Bacteriana da Expressão Gênica , Insetos/microbiologia , Photorhabdus/genética , Animais , DNA Bacteriano/genética , Loci Gênicos/genética , Genoma Bacteriano/genética , Motivos de Nucleotídeos/genética , Photorhabdus/metabolismo , Regiões Promotoras Genéticas/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Sequenciamento Completo do Genoma
11.
Theor Appl Genet ; 131(2): 319-332, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29098310

RESUMO

KEY MESSAGE: This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.


Assuntos
Flores/fisiologia , Estudos de Associação Genética , Helianthus/genética , Modelos Genéticos , Genótipo , Helianthus/fisiologia , Vigor Híbrido , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
12.
Front Plant Sci ; 8: 1633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983306

RESUMO

Prediction of hybrid performance using incomplete factorial mating designs is widely used in breeding programs including different heterotic groups. Based on the general combining ability (GCA) of the parents, predictions are accurate only if the genetic variance resulting from the specific combining ability is small and both parents have phenotyped descendants. Genomic selection (GS) can predict performance using a model trained on both phenotyped and genotyped hybrids that do not necessarily include all hybrid parents. Therefore, GS could overcome the issue of unknown parent GCA. Here, we compared the accuracy of classical GCA-based and genomic predictions for oil content of sunflower seeds using several GS models. Our study involved 452 sunflower hybrids from an incomplete factorial design of 36 female and 36 male lines. Re-sequencing of parental lines allowed to identify 468,194 non-redundant SNPs and to infer the hybrid genotypes. Oil content was observed in a multi-environment trial (MET) over 3 years, leading to nine different environments. We compared GCA-based model to different GS models including female and male genomic kinships with the addition of the female-by-male interaction genomic kinship, the use of functional knowledge as SNPs in genes of oil metabolic pathways, and with epistasis modeling. When both parents have descendants in the training set, the predictive ability was high even for GCA-based prediction, with an average MET value of 0.782. GS performed slightly better (+0.2%). Neither the inclusion of the female-by-male interaction, nor functional knowledge of oil metabolism, nor epistasis modeling improved the GS accuracy. GS greatly improved predictive ability when one or both parents were untested in the training set, increasing GCA-based predictive ability by 10.4% from 0.575 to 0.635 in the MET. In this scenario, performing GS only considering SNPs in oil metabolic pathways did not improve whole genome GS prediction but increased GCA-based prediction ability by 6.4%. Our results show that GS is a major improvement to breeding efficiency compared to the classical GCA modeling when either one or both parents are not well-characterized. This finding could therefore accelerate breeding through reducing phenotyping efforts and more effectively targeting for the most promising crosses.

13.
Genes (Basel) ; 8(10)2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28961181

RESUMO

Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.

14.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
15.
Front Plant Sci ; 8: 504, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450872

RESUMO

Ralstonia solanacearum is an important soil-borne plant pathogen with broad geographical distribution and the ability to cause wilt disease in many agriculturally important crops. Genome sequencing of multiple R. solanacearum strains has identified both unique and shared genetic traits influencing their evolution and ability to colonize plant hosts. Previous research has shown that DNA methylation can drive speciation and modulate virulence in bacteria, but the impact of epigenetic modifications on the diversification and pathogenesis of R. solanacearum is unknown. Sequencing of R. solanacearum strains GMI1000 and UY031 using Single Molecule Real-Time technology allowed us to perform a comparative analysis of R. solanacearum methylomes. Our analysis identified a novel methylation motif associated with a DNA methylase that is conserved in all complete Ralstonia spp. genomes and across the Burkholderiaceae, as well as a methylation motif associated to a phage-borne methylase unique to R. solanacearum UY031. Comparative analysis of the conserved methylation motif revealed that it is most prevalent in gene promoter regions, where it displays a high degree of conservation detectable through phylogenetic footprinting. Analysis of hyper- and hypo-methylated loci identified several genes involved in global and virulence regulatory functions whose expression may be modulated by DNA methylation. Analysis of genome-wide modification patterns identified a significant correlation between DNA modification and transposase genes in R. solanacearum UY031, driven by the presence of a high copy number of ISrso3 insertion sequences in this genome and pointing to a novel mechanism for regulation of transposition. These results set a firm foundation for experimental investigations into the role of DNA methylation in R. solanacearum evolution and its adaptation to different plants.

16.
Plant Cell Environ ; 40(10): 2276-2291, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28418069

RESUMO

Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modelling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First, we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65 534 tested Single Nucleotide Polymorphisms (SNPs), we identified nine quantitative trait loci controlling oil yield plasticity to cold stress. Associated single nucleotide polymorphisms are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, lipid transfer protein, cystatin, alternative oxidase or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.


Assuntos
Produtos Agrícolas/genética , Estudo de Associação Genômica Ampla , Óleos de Plantas/metabolismo , Estresse Fisiológico/genética , Mapeamento Cromossômico , Temperatura Baixa , Meio Ambiente , Genes de Plantas , Temperatura Alta , Modelos Teóricos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
17.
Sci Rep ; 7: 43670, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252016

RESUMO

Some of the bacterial cells in isogenic populations behave differently from others. We describe here how a new type of phenotypic heterogeneity relating to resistance to cationic antimicrobial peptides (CAMPs) is determinant for the pathogenic infection process of the entomopathogenic bacterium Photorhabdus luminescens. We demonstrate that the resistant subpopulation, which accounts for only 0.5% of the wild-type population, causes septicemia in insects. Bacterial heterogeneity is driven by the PhoPQ two-component regulatory system and expression of pbgPE, an operon encoding proteins involved in lipopolysaccharide (LPS) modifications. We also report the characterization of a core regulon controlled by the DNA-binding PhoP protein, which governs virulence in P. luminescens. Comparative RNAseq analysis revealed an upregulation of marker genes for resistance, virulence and bacterial antagonism in the pre-existing resistant subpopulation, suggesting a greater ability to infect insect prey and to survive in cadavers. Finally, we suggest that the infection process of P. luminescens is based on a bet-hedging strategy to cope with the diverse environmental conditions experienced during the lifecycle.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/microbiologia , Photorhabdus/efeitos dos fármacos , Photorhabdus/genética , Animais , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Insetos/microbiologia , Mutação , Óperon , Photorhabdus/patogenicidade , Virulência/genética
18.
Genome Announc ; 4(5)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27660780

RESUMO

Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.

19.
ACS Appl Mater Interfaces ; 8(31): 20012-22, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27447023

RESUMO

Laccase in combination with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator is a well-known bioelectrocatalyst for the 4-electron oxygen reduction reactions (ORR). The present work deals with the first exploitation of mesoporous iron(III) trimesate-based metal organic frameworks (MOF) MIL-100(Fe) (MIL stands for materials from Institut Lavoisier) as a new and efficient immobilization matrix of laccase for the building up of biocathodes for ORR. First, the immobilization of ABTS in the pores of the MOF was studied by combining micro-Raman spectroscopy, X-ray powder diffraction (XRPD), and N2 porosimetry. The ABTS-MIL-100(Fe)-based modified electrode presents excellent properties in terms of charge transfer kinetics and ionic conductivity as well as a very stable and reproducible electrochemical response, showing that MIL-100(Fe) provides a suitable and stabilizing microenvironment for electroactive ABTS molecules. In a second step, laccase was further immobilized on the MIL-100(Fe)-ABTS matrix. The Lac-ABTS-MIL-100(Fe)-CIE bioelectrode presents a high electrocatalytic current density of oxygen reduction and a reproducible electrochemical response characterized by a high stability over a long period of time (3 weeks). These results constitute a significant advance in the field of laccase-based bioelectrocatalysts for ORR. According to our work, it appears that the high catalytic efficiency of Lac-ABTS-MIL-100(Fe) for ORR may result from a synergy of chemical and catalytic properties of MIL-100(Fe) and laccase.

20.
J Mater Chem B ; 3(46): 8983-8992, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263029

RESUMO

Nanocomposites combining the mesoporous iron(iii) trimesate MIL-100(Fe) (MIL: Matériaux Institut Lavoisier) and platinum nanoparticles (Pt-NPs) have been used as immobilization matrices of glucose oxidase (GOx). Due to the physico-chemical properties of Pt-NPs (electroactivity) and MIL-100(Fe) (high specific surface area and pore volume, biocompatibility), the resulting GOx-MIL-100(Fe)-PtNP bioelectrode exhibits excellent electrocatalytic performances for glucose detection. This novel glucose biosensor presents a high sensitivity of 71 mA M-1 cm-2 under optimum conditions and a low limit of detection of 5 µM with low response time (<5 s). In contrast, substitution of iron by chromium or aluminum in MIL-100 leads to a much lower sensitivity and higher response time values, suggesting that the iron centres of MIL-100(Fe) may be involved in a synergistic effect which indeed enhances the catalytic oxidation of glucose and biosensor activity. Thus, this work extends the scope of MOF nanoparticles with engineered cores and surface to the field of highly sensitive, durable glucose biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...