Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2012): 20231462, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052247

RESUMO

A fundamental function of an organ is the ability to perceive mechanical cues. Yet, how this is accomplished is not fully understood, particularly in plant roots. In plants, the majority of studies dealing with the effects of mechanical stress have investigated the aerial parts. However, in natural conditions roots are also subjected to mechanical cues, for example when the root encounters a hard obstacle during its growth or when the soil settles. To investigate root cellular responses to root compression, we developed a microfluidic system associated with a microvalve allowing the delivery of controlled and reproducible mechanical stimulations to the root. In this study, examining plants expressing the R-GECO1-mTurquoise calcium reporter, we addressed the root cell deformation and calcium increase induced by the mechanical stimulation. Lateral pressure applied on the root induced a moderate elastic deformation of root cortical cells and elicited a multicomponent calcium signal at the onset of the pressure pulse, followed by a second one at the release of the pressure. This indicates that straining rather than stressing of tissues is relevant to trigger the calcium signal. Although the intensity of the calcium response increases with the pressure applied, successive pressure stimuli led to a remarkable attenuation of the calcium signal. The calcium elevation was restricted to the tissue under pressure and did not propagate. Strain sensing, spatial restriction and habituation to repetitive stimulation represent the fundamental properties of root signalling in response to local mechanical stimulation. These data linking mechanical properties of root cells to calcium elevation contribute to elucidating the pathway allowing the root to adapt to the mechanical cues generated by the soil.


Assuntos
Arabidopsis , Cálcio/metabolismo , Transdução de Sinais/fisiologia , Solo , Raízes de Plantas
2.
Physiol Plant ; 175(6): e14094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148185

RESUMO

As roots grow through the soil to forage for water and nutrients, they encounter mechanical obstacles such as patches of dense soil and stones that locally impede root growth. Here, we investigated hitherto poorly understood systemic responses of roots to localised root impedance. Seedlings of two wheat genotypes were grown in hydroponics and exposed to impenetrable obstacles constraining the vertical growth of the primary or a single seminal root. We deployed high-resolution in vivo imaging to quantify temporal dynamics of root elongation rate, helical root movement, and root growth direction. The two genotypes exhibited distinctly different patterns of systemic responses to localised root impedance, suggesting different strategies to cope with obstacles, namely stress avoidance and stress tolerance. Shallower growth of unconstrained seminal roots and more pronounced helical movement of unconstrained primary and seminal roots upon localised root impedance characterised the avoidance strategy shown by one genotype. Stress tolerance to localised root impedance, as exhibited by the other genotype, was indicated by relatively fast elongation of primary roots and steeper seminal root growth. These different strategies highlight that the effects of mechanical obstacles on spatiotemporal root growth patterns can differ within species, which may have major implications for resource acquisition and whole-plant growth.


Assuntos
Raízes de Plantas , Plântula , Genótipo , Plântula/genética , Solo , Triticum/fisiologia
3.
NPJ Microgravity ; 9(1): 67, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604914

RESUMO

Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.

4.
J Exp Bot ; 73(12): 4046-4064, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325111

RESUMO

Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.


Assuntos
Regulação da Expressão Gênica de Plantas , Populus , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
5.
New Phytol ; 234(2): 412-421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075689

RESUMO

Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+ ]cyt ) increase as a second messenger. The downstream PM Ca2+ channels remain enigmatic. Here, the Arabidopsis thaliana Ca2+ channel subunit CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+ ]cyt signalling in roots. Extracellular ATP-induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+ ]cyt were measured with aequorin, and root transcriptional changes were determined by quantitative real-time PCR. Two cngc2 loss-of-function mutants were used: cngc2-3 and defence not death1 (which expresses cytosolic aequorin). Extracellular ATP-induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+ dependent, requiring CNGC2 but not CNGC4 (its channel co-subunit in immunity signalling). Activation of PM Ca2+ influx currents also required CNGC2. The eATP-induced [Ca2+ ]cyt increase and transcriptional response in cngc2 roots were significantly impaired. CYCLIC NUCLEOTIDE-GATED CHANNEL2 is required for eATP-induced epidermal Ca2+ influx, causing depolarization leading to [Ca2+ ]cyt increase and damage-related transcriptional response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/farmacologia , Células Epidérmicas , Epiderme/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Transdução de Sinais
7.
Ann Bot ; 124(7): 1227-1242, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31904093

RESUMO

BACKGROUND AND AIMS: Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS: Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS: Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION: DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina , Cálcio , Sinalização do Cálcio , Raízes de Plantas
8.
Front Plant Sci ; 10: 1064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552068

RESUMO

Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.

9.
J Exp Bot ; 70(6): 1955-1967, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916341

RESUMO

Gravity is a major abiotic cue for plant growth. However, little is known about the responses of plants to various patterns of gravi-stimulation, with apparent contradictions being observed between the dose-like responses recorded under transient stimuli in microgravity environments and the responses under steady-state inclinations recorded on earth. Of particular importance is how the gravitropic response of an organ is affected by the temporal dynamics of downstream processes in the signalling pathway, such as statolith motion in statocytes or the redistribution of auxin transporters. Here, we used a combination of experiments on the whole-plant scale and live-cell imaging techniques on wheat coleoptiles in centrifuge devices to investigate both the kinematics of shoot-bending induced by transient inclination, and the motion of the statoliths in response to cell inclination. Unlike previous observations in microgravity, the response of shoots to transient inclinations appears to be independent of the level of gravity, with a response time much longer than the duration of statolith sedimentation. This reveals the existence of a memory process in the gravitropic signalling pathway, independent of statolith dynamics. By combining this memory process with statolith motion, a mathematical model is built that unifies the different laws found in the literature and that predicts the early bending response of shoots to arbitrary gravi-stimulations.


Assuntos
Gravitropismo , Brotos de Planta/fisiologia , Triticum/crescimento & desenvolvimento , Fenômenos Biomecânicos , Cotilédone/crescimento & desenvolvimento , Transdução de Sinais
10.
Sci Rep ; 8(1): 11442, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061667

RESUMO

Gravity is a permanent environmental signal guiding plant growth and development. Gravity sensing in plants starts with the displacement of starch-filled plastids called statoliths, ultimately leading to auxin redistribution and organ curvature. While the involvement in gravity sensing of several actors such as calcium is known, the effect of statolith displacement on calcium changes remains enigmatic. Microgravity is a unique environmental condition offering the opportunity to decipher this link. In this study, roots of Brassica napus were grown aboard the International Space Station (ISS) either in microgravity or in a centrifuge simulating Earth gravity. The impact of short simulated gravity onset and removal was measured on statolith positioning and intracellular free calcium was assessed using pyroantimonate precipitates as cytosolic calcium markers. Our findings show that a ten-minute onset or removal of gravity induces very low statolith displacement, but which is, nevertheless, associated with an increase of the number of pyroantimonate precipitates. These results highlight that a change in the cytosolic calcium distribution is triggered in absence of a significant statolith displacement.


Assuntos
Cálcio/metabolismo , Citoplasma/metabolismo , Gravitação , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Ausência de Peso , Antimônio/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Brassica napus/ultraestrutura , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/ultraestrutura , Plântula/fisiologia , Voo Espacial
11.
Proc Natl Acad Sci U S A ; 115(20): 5123-5128, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712863

RESUMO

Plants are able to sense and respond to minute tilt from the vertical direction of the gravity, which is key to maintain their upright posture during development. However, gravisensing in plants relies on a peculiar sensor made of microsize starch-filled grains (statoliths) that sediment and form tiny granular piles at the bottom of the cell. How such a sensor can detect inclination is unclear, as granular materials like sand are known to display flow threshold and finite avalanche angle due to friction and interparticle jamming. Here, we address this issue by combining direct visualization of statolith avalanches in plant cells and experiments in biomimetic cells made of microfluidic cavities filled with a suspension of heavy Brownian particles. We show that, despite their granular nature, statoliths move and respond to the weakest angle, as a liquid clinometer would do. Comparison between the biological and biomimetic systems reveals that this liquid-like behavior comes from the cell activity, which agitates statoliths with an apparent temperature one order of magnitude larger than actual temperature. Our results shed light on the key role of active fluctuations of statoliths for explaining the remarkable sensitivity of plants to inclination. Our study also provides support to a recent scenario of gravity perception in plants, by bridging the active granular rheology of statoliths at the microscopic level to the macroscopic gravitropic response of the plant.


Assuntos
Biomimética , Gravitropismo , Sensação Gravitacional/fisiologia , Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Triticum/crescimento & desenvolvimento , Soluções , Triticum/fisiologia
12.
Phys Biol ; 14(6): 065004, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28976363

RESUMO

Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.


Assuntos
Raízes de Plantas/fisiologia , Solo/química , Modelos Teóricos , Raízes de Plantas/crescimento & desenvolvimento , Estresse Mecânico
13.
Sci Rep ; 6: 35431, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739470

RESUMO

Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.


Assuntos
Gravitropismo , Brotos de Planta/fisiologia , Triticum/fisiologia
14.
Plant Physiol ; 169(1): 890-902, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084921

RESUMO

Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.


Assuntos
Ácidos Indolacéticos/metabolismo , Laccaria/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Populus/microbiologia , Transdução de Sinais , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Laccaria/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Análise Multivariada , Micorrizas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Populus/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Nat Commun ; 6: 6279, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25703994

RESUMO

The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (-)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates.


Assuntos
Laccaria/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Sesquiterpenos , Arabidopsis , Ascomicetos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Superóxidos/metabolismo , Simbiose , Compostos Orgânicos Voláteis
16.
Front Plant Sci ; 5: 610, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25414717

RESUMO

Gravity is a crucial environmental factor regulating plant growth and development. Plants have the ability to sense a change in the direction of gravity, which leads to the re-orientation of their growth direction, so-called gravitropism. In general, plant stems grow upward (negative gravitropism), whereas roots grow downward (positive gravitropism). Models describing the gravitropic response following the tilting of plants are presented and highlight that gravitropic curvature involves both gravisensing and mechanosensing, thus allowing to revisit experimental data. We also discuss the challenge to set up experimental designs for discriminating between gravisensing and mechanosensing. We then present the cellular events and the molecular actors known to be specifically involved in gravity sensing.

17.
Physiol Plant ; 151(2): 192-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24666319

RESUMO

Adventitious rooting is an essential step in the vegetative propagation of economically important horticultural and woody species. Populus has emerged as an experimental model for studying processes that are important in tree growth and development. It is highly useful for molecular genetic analysis of adventitious roots in trees. In this short review, we will highlight the recent progress made in the identification of transcription factors involved in the control of adventitious rooting in woody species. Their regulation will be discussed.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Populus/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Árvores/genética , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
18.
Environ Microbiol ; 15(6): 1853-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23379715

RESUMO

The ectomycorrhizal (ECM) symbiosis, a mutualistic plant-fungus association, plays a fundamental role in forest ecosystems by enhancing plant growth and by providing host protection from root diseases. The cellular complexity of the symbiotic organ, characterized by the differentiation of structurally specialized tissues (i.e. the fungal mantle and the Hartig net), is the major limitation to study fungal gene expression in such specific compartments. We investigated the transcriptional landscape of the ECM fungus Tuber melanosporum during the major stages of its life cycle and we particularly focused on the complex symbiotic stage by combining the use of laser capture microdissection and microarray gene expression analysis. We isolated the fungal/soil (i.e. the mantle) and the fungal/plant (i.e. the Hartig net) interfaces from transverse sections of T. melanosporum/Corylus avellana ectomycorrhizas and identified the distinct genetic programmes associated with each compartment. Particularly, nitrogen and water acquisition from soil, synthesis of secondary metabolites and detoxification mechanisms appear to be important processes in the fungal mantle. In contrast, transport activity is enhanced in the Hartig net and we identified carbohydrate and nitrogen-derived transporters that might play a key role in the reciprocal resources' transfer between the host and the symbiont.


Assuntos
Regulação Fúngica da Expressão Gênica , Análise em Microsséries , Microdissecção , Micorrizas/genética , Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Simbiose/genética
19.
Plant Cell Environ ; 36(5): 909-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23145472

RESUMO

A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin-signalling pathways in modulating plant-microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter-species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant-microbe interactions.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/anatomia & histologia , Simbiose , Transporte Biológico , Técnicas de Cocultura , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/genética , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobium/crescimento & desenvolvimento , Transdução de Sinais
20.
Plant Physiol ; 160(4): 1996-2006, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23077242

RESUMO

Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots.


Assuntos
Genes Homeobox/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Populus/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...