RESUMO
Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.
Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Microbiologia do Solo , Bactérias/classificação , Brasil , Meios de Cultura , DNA Bacteriano/genética , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise , Clima TropicalRESUMO
The use of stable isotopes of N and O in N2O has been proposed as a way to better constrain the global budget of atmospheric N2O and to better understand the relative contributions of the main microbial processes (nitrification and denitrification) responsible for N2O formation in soil. This study compared the isotopic composition of N2O emitted from soils under different tree species in the Brazilian Amazon. We also compared the effect of tree species with that of soil moisture, as we expected the latter to be the main factor regulating the proportion of nitrifier- and denitrifier-derived N2O and, consequently, isotopic signatures of N2O. Tree species significantly affected delta15N in nitrous oxide. However, there was no evidence that the observed variation in delta15N in N2O was determined by varying proportions of nitrifier- vs. denitrifier-derived N2O. We submit that the large variation in delta15N-N2O is the result of competition between denitrifying and immobilizing microorganisms for NO3(-). In addition to altering delta15N-N2O, tree species affected net rates of N2O emission from soil in laboratory incubations. These results suggest that tree species contribute to the large isotopic variation in N2O observed in a range tropical forest soils. We found that soil water affects both 15N and 18O in N2O, with wetter soils leading to more depleted N2O in both 15N and 18O. This is likely caused by a shift in biological processes for 15N and possible direct exchange of 18O between H2O and N2O.