Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 15(19): 2572-84, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11581162

RESUMO

Drosophila PIM and THR are required for sister chromatid separation in mitosis and associate in vivo. Neither of these two proteins shares significant sequence similarity with known proteins. However, PIM has functional similarities with securin proteins. Like securin, PIM is degraded at the metaphase-to-anaphase transition and this degradation is required for sister chromatid separation. Securin binds and inhibits separase, a conserved cysteine endoprotease. Proteolysis of securin at the metaphase-to-anaphase transition activates separase, which degrades a conserved cohesin subunit, thereby allowing sister chromatid separation. To address whether PIM regulates separase activity or functions with THR in a distinct pathway, we have characterized a Drosophila separase homolog (SSE). SSE is an unusual member of the separase family. SSE is only about one-third the size of other separases and has a diverged endoprotease domain. However, our genetic analyses show that SSE is essential and required for sister chromatid separation during mitosis. Moreover, we show that SSE associates with both PIM and THR. Although our work shows that separase is required for sister chromatid separation in higher eukaryotes, in addition, it also indicates that the regulatory proteins have diverged to a surprising degree, particularly in Drosophila.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas de Drosophila , Drosophila/enzimologia , Endopeptidases , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Dados de Sequência Molecular , Separase , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Dev Genes Evol ; 211(8-9): 458-65, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11685583

RESUMO

The Cre/loxP site-specific recombination system has been used successfully for genome manipulation in a wide range of species. However, in Drosophila melanogaster, a major model organism for genetic analyses, the alternative FLP/FRT system, which is less efficient at least in mammalian cells, has been established, primarily for the generation of genetic mosaics for clonal analyses. To extend genetic methodology in D. melanogaster, we have created transgenic lines allowing tissue-specific expression of Cre recombinase with the UAS/GAL4 system. Surprisingly, chronic expression of Cre recombinase from these transgenes (UAST-cre) was found to be toxic for proliferating cells. Therefore, we also generated transgenic lines allowing the expression of Cre recombinase fused to the ligand-binding domain of the human estrogen receptor (UASP-cre-EBD). We demonstrate that recombination can be efficiently dissociated from toxicity by estrogen-dependent regulation of recombinase activity of the UASP-cre-EBD transgene products.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Estradiol/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Integrases/metabolismo , Proteínas Virais/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Sítios de Ligação Microbiológicos/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Ativação Enzimática/efeitos dos fármacos , Olho/crescimento & desenvolvimento , Olho/metabolismo , Olho/ultraestrutura , Humanos , Integrases/genética , Integrases/toxicidade , Mutagênese Sítio-Dirigida/efeitos dos fármacos , Mutagênese Sítio-Dirigida/genética , Especificidade de Órgãos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/toxicidade , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Transgenes/genética , Proteínas Virais/genética , Proteínas Virais/toxicidade , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
3.
Novartis Found Symp ; 237: 43-54; discussion 54-7, 93-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11444049

RESUMO

Cell proliferation during Drosophila development occurs in a well known spatial and temporal pattern which can readily be studied in vivo. The cells which form the larval epidermis exit from the cell division cycle during embryogenesis after the 16th round of mitosis when they enter for the first time into a G1/0 phase. We are interested in the mechanistic basis of this cell proliferation arrest. We have shown that the arrest requires the down-regulation of cyclin E/Cdk2 activity by inhibition of cyclin E expression and parallel activation of Dacapo/p27 expression. In addition, up-regulation of Fizzy-related is observed and is required for inhibition of Cdk1 activity. Do these processes result from the down-regulation of D-type cyclin/Cdk complexes? Extensive evidence from mammalian cells, and in particular from tumour cells has suggested that these complexes act as master regulators of cell proliferation upstream of cyclin E. Our genetic analyses indicate that Drosophila cyclin D/Cdk4, which interacts with the Drosophila Rb family member as expected, does not play an essential role in the regulation of cell proliferation.


Assuntos
Ciclo Celular/fisiologia , Ciclina E/metabolismo , Ciclinas/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Embrião não Mamífero/fisiologia , Proteínas Tirosina Fosfatases , Proteínas Proto-Oncogênicas , Animais , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular , Ciclina D , Quinase 4 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Inibidores Enzimáticos/metabolismo , Microscopia de Fluorescência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/fisiologia , Fosfoproteínas Fosfatases/metabolismo
4.
EMBO J ; 20(10): 2376-86, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11350926

RESUMO

The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.


Assuntos
Ciclina A/metabolismo , Mitose/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Ciclo Celular , Drosophila melanogaster , Fase G1 , Metáfase , Dados de Sequência Molecular
5.
EMBO J ; 19(17): 4533-42, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10970847

RESUMO

Complexes of D-type cyclins and cdk4 or 6 are thought to govern progression through the G(1) phase of the cell cycle. In Drosophila, single genes for Cyclin D and Cdk4 have been identified, simplifying genetic analysis. Here, we show that Drosophila Cdk4 interacts with Cyclin D and the Rb homolog RBF as expected, but is not absolutely essential. Flies homozygous for null mutations develop to the adult stage and are fertile, although only to a very limited degree. Overexpression of inactive mutant Cdk4, which is able to bind Cyclin D, does not enhance the Cdk4 mutant phenotype, confirming the absence of additional Cyclin D-dependent cdks. Our results indicate, therefore, that progression into and through the cell cycle can occur in the absence of Cdk4. However, the growth of cells and of the organism is reduced in Cdk4 mutants, indicating a role of D-type cyclin-dependent protein kinases in the modulation of growth rates.


Assuntos
Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas , Animais , Sequência de Bases , Ciclina D , Quinase 4 Dependente de Ciclina , Ciclinas/metabolismo , Primers do DNA , Drosophila/enzimologia , Proteínas de Drosophila , Ligação Proteica
6.
EMBO J ; 19(17): 4543-54, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10970848

RESUMO

Mammalian cyclin D-Cdk4 complexes have been characterized as growth factor-responsive cell cycle regulators. Their levels rise upon growth factor stimulation, and they can phosphorylate and thus neutralize Retinoblastoma (Rb) family proteins to promote an E2F-dependent transcriptional program and S-phase entry. Here we characterize the in vivo function of Drosophila Cyclin D (CycD). We find that Drosophila CycD-Cdk4 does not act as a direct G(1)/S-phase regulator, but instead promotes cellular growth (accumulation of mass). The cellular response to CycD-Cdk4-driven growth varied according to cell type. In undifferentiated proliferating wing imaginal cells, CycD-Cdk4 caused accelerated cell division (hyperplasia) without affecting cell cycle phasing or cell size. In endoreplicating salivary gland cells, CycD-Cdk4 caused excessive DNA replication and cell enlargement (hypertrophy). In differentiating eyes, CycD-Cdk4 caused cell enlargement (hypertrophy) in post-mitotic cells. Interaction tests with a Drosophila Rb homolog, RBF, indicate that CycD-Cdk4 can counteract the cell cycle suppressive effects of RBF, but that its growth promoting activity is mediated at least in part via other targets.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas , Sequência de Aminoácidos , Animais , Divisão Celular , Ciclina D , Quinase 4 Dependente de Ciclina , Drosophila/enzimologia , Drosophila/metabolismo , Proteínas de Drosophila , Olho/citologia , Fase G1 , Dados de Sequência Molecular , Fase S , Asas de Animais/citologia
7.
Genes Dev ; 14(17): 2192-205, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10970883

RESUMO

Drosophila Pimples (PIM) and Three rows (THR) are required for sister chromatid separation in mitosis. PIM accumulates during interphase and is degraded rapidly during mitosis. This degradation is dependent on a destruction box similar to that of B-type cyclins. Nondegradable PIM with a mutant destruction box can rescue sister chromatid separation in pim mutants but only when expressed at low levels. Higher levels of nondegradable PIM, as well as overexpression of wild-type PIM, inhibit sister chromatid separation. Moreover, cells arrested in mitosis before sister chromatid separation (by colcemid or by mutations in fizzy/CDC20) fail to degrade PIM. Thus, although not related by primary sequence, PIM has intriguing functional similarities to the securin proteins of budding yeast, fission yeast, and vertebrates. Whereas these securins are known to form a complex with separins, we show that PIM associates in vivo with THR, which does not contain the conserved separin domain.


Assuntos
Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas de Drosophila , Drosophila/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mitose/genética , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Antineoplásicos Fitogênicos/farmacologia , Proteínas Cdc20 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromátides/ultraestrutura , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Ligação a DNA , Demecolcina/farmacologia , Epitopos , Proteínas Fúngicas/metabolismo , Immunoblotting , Proteínas de Insetos/química , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo
8.
Genetics ; 155(1): 233-44, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10790398

RESUMO

In higher eukaryotes, cyclin E is thought to control the progression from G1 into S phase of the cell cycle by associating as a regulatory subunit with cdk2. To identify genes interacting with cyclin E, we have screened in Drosophila melanogaster for mutations that act as dominant modifiers of an eye phenotype caused by a Sevenless-CycE transgene that directs ectopic Cyclin E expression in postmitotic cells of eye imaginal disc and causes a rough eye phenotype in adult flies. The majority of the EMS-induced mutations that we have identified fall into four complementation groups corresponding to the genes split ends, dacapo, dE2F1, and Cdk2(Cdc2c). The Cdk2 mutations in combination with mutant Cdk2 transgenes have allowed us to address the regulatory significance of potential phosphorylation sites in Cdk2 (Thr 18 and Tyr 19). The corresponding sites in the closely related Cdk1 (Thr 14 and Tyr 15) are of crucial importance for regulation of the G2/M transition by myt1 and wee1 kinases and cdc25 phosphatases. In contrast, our results demonstrate that the equivalent sites in Cdk2 play no essential role.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas de Transporte , Proteínas de Ciclo Celular , Ciclina E/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster/genética , Genes de Insetos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases , Transativadores , Animais , Sítios de Ligação , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição E2F , Elementos Facilitadores Genéticos , Olho , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Mutagênese , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA , Proteína 1 de Ligação ao Retinoblastoma , Treonina/genética , Fatores de Transcrição/genética , Tirosina/genética , Zigoto
10.
Genes Dev ; 12(23): 3741-51, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9851980

RESUMO

Cyclin B3 has been conserved during higher eukaryote evolution as evidenced by its identification in chicken, nematodes, and insects. We demonstrate that Cyclin B3 is present in addition to Cyclins A and B in mitotically proliferating cells and not detectable in endoreduplicating tissues of Drosophila embryos. Cyclin B3 is coimmunoprecipitated with Cdk1(Cdc2) but not with Cdk2(Cdc2c). It is degraded abruptly during mitosis like Cyclins A and B. In contrast to these latter cyclins, which accumulate predominantly in the cytoplasm during interphase, Cyclin B3 is a nuclear protein. Genetic analyses indicate functional redundancies. Double and triple mutant analyses demonstrate that Cyclins A, B, and B3 cooperate to regulate mitosis, but surprisingly single mutants reveal that neither Cyclin B3 nor Cyclin B is required for mitosis. However, both are required for female fertility and Cyclin B also for male fertility.


Assuntos
Ciclina B/metabolismo , Drosophila/embriologia , Proteínas Nucleares/metabolismo , Óvulo/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Ciclina B/genética , Proteínas de Drosophila , Feminino , Fertilidade , Masculino , Mitose , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos
11.
Curr Biol ; 8(4): 239-42, 1998 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-9501988

RESUMO

Entry into S phase of the mitotic cell cycle is normally strictly dependent on progression through the preceding M phase. In contrast, during endoreduplication, which accompanies post-mitotic cell growth in many organisms, repeated S phases occur without intervening M phases. Upon transition from mitotic to endoreduplication cycles in Drosophila embryos, expression of the mitotic cyclins A, B and B3 is terminated and Cyclin E expression is changed from a continuous into a periodic mode [1-3]. Here, we address whether these changes in cyclin expression are required for endoreduplication by continuously expressing Cyclin A, B, B3 or E in the salivary glands of Drosophila throughout late embryonic and larval development. With the exception of Cyclin A, expression of which inhibited endoreduplication effectively but only in a few, apparently randomly distributed, cells of the salivary gland, mitotic cyclin expression was found to have no effect. In contrast, Cyclin E expression resulted in a striking inhibition of endoreduplication and growth, preceded initially by an ectopic S phase occurring just after the onset of ectopic Cyclin E expression. This observation is consistent with our previous findings that Cyclin E is required, and pulses of ectopic expression are sufficient, for triggering endoreduplication S phases [4]. Our results indicate that Cyclin E activity, which triggers DNA replication, needs to be down-regulated to allow a subsequent S phase in vivo.


Assuntos
Ciclina E/metabolismo , Drosophila/citologia , Animais , Ciclina E/genética , Quinases Ciclina-Dependentes/metabolismo , DNA , Drosophila/metabolismo , Mitose , Glândulas Salivares/metabolismo
12.
Development ; 124(18): 3555-63, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9342048

RESUMO

During larval development, Drosophila imaginal discs increase in size about 1000-fold and cells are instructed to acquire distinct fates as a function of their position. The secreted signaling molecules Wingless and Decapentaplegic have been implicated as sources of positional information that globally control growth and patterning. Evidence has also been presented that local cell interactions play an important role in controlling cell proliferation in imaginal discs. As a first step to understanding how patterning cues influence growth we investigated the effects of blocking cell division at different times and in spatially controlled manner by inactivation of the mitotic kinase Cdc2 in developing imaginal discs. We find that cell growth continues after inactivation of Cdc2, with little effect on overall patterning. The mechanisms that regulate size of the disc therefore do not function by regulating cell division, but appear to act primarily by regulating size in terms of physical distance or tissue volume.


Assuntos
Padronização Corporal , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Drosophila/citologia , Asas de Animais/citologia , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Tamanho Celular , Células Clonais , Replicação do DNA , Drosophila/crescimento & desenvolvimento , Larva/citologia , Larva/crescimento & desenvolvimento , Pupa/citologia , Pupa/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento
13.
Cell ; 90(4): 671-81, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9288747

RESUMO

We demonstrate that fizzy-related (fzr), a conserved eukaryotic gene, negatively regulates the levels of cyclins A, B, and B3. These mitotic cyclins that bind and activate cdk1(cdc2) are rapidly degraded during exit from M and during G1. While Drosophila fizzy has previously been shown to be required for cyclin destruction during M phase, fzr is required for cyclin removal during G1 when the embryonic epidermal cell proliferation stops and during G2 preceding salivary gland endoreduplication. Loss of fzr causes progression through an extra division cycle in the epidermis and inhibition of endoreduplication in the salivary gland, in addition to failure of cyclin removal. Conversely, premature fzr overexpression down-regulates mitotic cyclins, inhibits mitosis, and transforms mitotic cycles into endoreduplication cycles.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Ciclina B , Ciclinas/genética , Regulação para Baixo , Proteínas de Drosophila , Proteínas de Insetos/fisiologia , Mitose , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Divisão Celular , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Drosophila melanogaster/embriologia , Endocitose , Proteínas de Insetos/genética , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Xenopus
14.
Genes Dev ; 11(10): 1289-98, 1997 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9171373

RESUMO

Cell cycle arrest in G1 at the onset of patterning in the Drosophila eye is mediated by roughex. In roughex mutants, cells accumulate Cyclin A protein in early G1 and progress into S phase precociously. When Roughex is overexpressed in S/G2 cells, Cyclin A is mislocalized to the nucleus and degraded, preventing mitosis. Whereas Roughex inhibits Cyclin A accumulation, Cyclin E down-regulates Roughex protein in vivo. Roughex binds to Cyclin E and is a substrate for a Cyclin E-Cdk complex in vitro. These data argue that Roughex inhibits Cyclin A accumulation in early G1 by targeting Cyclin A for destruction. In late G1, Roughex is destabilized in a Cyclin E-dependent process, releasing Cyclin A for its role in S/G2.


Assuntos
Ciclo Celular/genética , Regulação para Baixo , Proteínas de Drosophila , Proteínas do Olho/genética , Animais , Drosophila/citologia , Drosophila/genética , Olho/citologia , Olho/metabolismo , Proteínas do Olho/metabolismo
15.
J Cell Sci ; 110 ( Pt 5): 523-8, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9092934

RESUMO

The molecular identification of an evolutionarily conserved set of cell cycle regulators in yeast, Xenopus egg extracts, and vertebrate cell culture has opened up a new perspective for understanding the mechanisms that regulate cell proliferation during metazoan development. Now we can study how the crucial regulators of eukaryotic cell cycle progression, the various cyclin/cdk complexes (for a recent review see Nigg (1995) BioEssays 17, 471-480), are turned on or off during development. In Drosophila, this analysis is most advanced, in particular in the case of the rather rigidly programmed embryonic cell cycles that generate the cells of the larvae. In addition, this analysis has revealed how the mitotic cycle is transformed into an endocycle which allows the extensive growth of larvae and oocytes. In contrast, we know little about cyclin/cdk regulation during the imaginal proliferation that generates the cells of the adult. Nevertheless, we will also consider this second developmental phase with its conspicuous regulative character, because it will be of great interest for the analysis of the molecular mechanisms that integrate growth and proliferation during development.


Assuntos
Ciclo Celular , Drosophila/citologia , Animais , Divisão Celular , Linhagem da Célula , Drosophila/embriologia , Drosophila/fisiologia , Larva/citologia , Oogênese
16.
Cell ; 87(7): 1225-35, 1996 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-8980229

RESUMO

Most cell types in multicellular eukaryotes exit from the mitotic cell cycle before terminal differentiation. We show that the dacapo gene is required to arrest the epidermal cell proliferation at the correct developmental stage during Drosophila embryogenesis. dacapo encodes an inhibitor of cyclin E/cdk2 complexes with similarity to the vertebrate Cip/Kip inhibitors. dacapo is transiently expressed beginning late in the G2 phase preceding the terminal division (mitosis 16). Mutants unable to express the inhibitor fail to arrest cell proliferation after mitosis 16 and progress through an extra division cycle. Conversely, premature dacapo expression in transgenic embryos results in a precocious G1 arrest.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/antagonistas & inibidores , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Inibidores do Crescimento/genética , Proteínas de Insetos/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sequência de Bases , Divisão Celular , Quinase 2 Dependente de Ciclina , DNA Complementar/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Inibidores Enzimáticos , Células Epidérmicas , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Substâncias Macromoleculares , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/genética , Alinhamento de Sequência
17.
Science ; 274(5293): 1646-52, 1996 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-8939845

RESUMO

During early development in many species, maternally supplied gene products permit the cell cycle to run at maximum velocity, subdividing the fertilized egg into smaller and smaller cells. As development proceeds, zygotic controls are activated that first limit divisions to defined spatial and temporal domains, coordinating them with morphogenesis, and then halt proliferation altogether, to allow cell differentiation. Analysis of the regulation of cyclin-dependent kinases (Cdks) in Drosophila has provided insights into how this embryonic program of cell proliferation is controlled at the molecular level and how it is linked to developmental cues. Recent studies have also begun to reveal how cell proliferation is controlled during the second phase of Drosophila development, which occurs in imaginal tissues. In contrast to their embryonic progenitors, imaginal cells proliferate with a cycle that requires cell growth and is linked to patterning processes controlled by secreted cell signaling molecules. The functions of these signaling molecules appear to be nearly as conserved between vertebrates and invertebrates as the cell cycle control apparatus itself, suggesting that the mechanisms that coordinate growth, patterning, and cell proliferation in developing tissues have ancient origins.


Assuntos
Ciclo Celular , Drosophila/citologia , Animais , Padronização Corporal , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Replicação do DNA , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mitose , Transdução de Sinais , Zigoto/fisiologia
18.
Mol Biol Cell ; 7(11): 1759-69, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8930898

RESUMO

In addition to the previously identified Drosophila cdc2 and cdc2c genes, we have identified four additional cdc2-related genes with low stringency and polymerase chain reaction approaches. Sequence comparisons suggest that the four putative kinases represent the Drosophila homologues of vertebrate cdk4/6, cdk5, PCTAIRE, and PITSLRE kinases. Although the similarity between human and Drosophila homologues is extensive in the case of cdk5, PCTAIRE, and PITSLRE kinases (78%, 58%, and 65% identity in the kinase domain), only limited conservation is observed for Drosophila cdk4/6 (47% identity). However, like vertebrate cdk4 and cdk6, Drosophila cdk4/6 binds also to a D-type cyclin according to the results of two-hybrid experiments in yeast. Northern blot analysis indicated that the four Drosophila kinases are expressed throughout embryogenesis. Expression in early embryogenesis appeared to be ubiquitous according to in situ hybridization. Abundant expression already at the start of embryogenesis and long before neuron differentiation was also observed in the case of cdk5 protein, which has been described as predominantly neuron specific in mice. Sequence conservation and expression pattern, therefore, suggest that all of these kinases perform important cellular functions.


Assuntos
Quinases Ciclina-Dependentes/química , Proteínas de Drosophila , Drosophila/enzimologia , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Quinase 4 Dependente de Ciclina , Quinase 5 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , DNA Complementar , Drosophila/embriologia , Drosophila/genética , Evolução Molecular , Expressão Gênica , Genes de Insetos , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Homologia de Sequência de Aminoácidos
19.
Cell ; 84(1): 25-35, 1996 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-8548823

RESUMO

Mutations in the Drosophila genes pimples and three rows result in a defect of sister chromatid separation during mitosis. As a consequence, cytokinesis is also defective. However, cell cycle progression including the mitotic degradation of cyclins A and B is not blocked by the failure of sister chromatid separation, and as a result, metaphase chromosomes with twice the normal number of chromosome arms still connected in the centromeric region are observed in the following mitosis, pimples encodes a novel protein that is rapidly degraded in mitosis. Our observations suggest that Pimples and Three rows act during mitosis to release the cohesion between sister centromeres.


Assuntos
Anáfase/genética , Antígenos de Protozoários , Proteínas de Ciclo Celular/genética , Cromátides/genética , Drosophila/genética , Metáfase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Centrômero/genética , Centrômero/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Clonagem Molecular , Ciclinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Insetos/fisiologia , Hibridização in Situ Fluorescente , Larva/genética , Mitose/genética , Dados de Sequência Molecular , Mutação/fisiologia , Fenótipo , Proteínas de Protozoários/genética
20.
Development ; 121(11): 3713-21, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8582283

RESUMO

The correct specification of defined neurons in the Drosophila central nervous system is dependent on even-skipped. During CNS development, even-skipped expression starts in the ganglion mother cell resulting from the first asymmetric division of neuroblast NB 1-1. This first division of NB 1-1 (and of the other early neuroblasts as well) is temporally controlled by the transcriptional regulation of string expression, which we have manipulated experimentally, even-skipped expression still occurs if the first neuroblast division is delayed, but not if the division is prohibited. Moreover, even-skipped expression is also dependent on progression through S phase which follows immediately after the first division. However, cytokinesis during the first NB division is not required for even-skipped expression as revealed by observations in pebble mutant embryos. Our results demonstrate therefore that even-skipped expression is coupled to cell cycle progression, presumably in order to prevent a premature activation of expression by a positive regulator which is produced already in the neuroblast during G2 and segregated asymmetrically into the ganglion mother cell during mitosis.


Assuntos
Proteínas de Bactérias , Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Sistema Nervoso/embriologia , Fase S , Fatores de Transcrição , Animais , Ciclo Celular/genética , Imuno-Histoquímica , Hibridização In Situ , Microinjeções , Sistema Nervoso/citologia , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA