Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Hum Mol Genet ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776957

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.

2.
Antiviral Res ; 227: 105894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677595

RESUMO

COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Animais , Farmacorresistência Viral , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico
3.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539041

RESUMO

MOTIVATION: In recent years, improvements in throughput of single-cell RNA-seq have resulted in a significant increase in the number of cells profiled. The generation of single-cell RNA-seq datasets comprising >1 million cells is becoming increasingly common, giving rise to demands for more efficient computational workflows. RESULTS: We present an update to our single-cell RNA-seq analysis web server application, ICARUS (available at https://launch.icarus-scrnaseq.cloud.edu.au) that allows effective analysis of large-scale single-cell RNA-seq datasets. ICARUS v3 utilizes the geometric cell sketching method to subsample cells from the overall dataset for dimensionality reduction and clustering that can be then projected to the large dataset. We then extend this functionality to select a representative subset of cells for downstream data analysis applications including differential expression analysis, gene co-expression network construction, gene regulatory network construction, trajectory analysis, cell-cell communication inference, and cell cluster associations to GWAS traits. We demonstrate analysis of single-cell RNA-seq datasets using ICARUS v3 of 1.3 million cells completed within the hour. AVAILABILITY AND IMPLEMENTATION: ICARUS is available at https://launch.icarus-scrnaseq.cloud.edu.au.


Assuntos
Algoritmos , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
4.
Genet Sel Evol ; 56(1): 22, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549172

RESUMO

BACKGROUND: Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS: We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS: Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.


Assuntos
Lactação , Lactoferrina , Leite , Animais , Feminino , Haplótipos , Lactação/genética , Lactoferrina/genética , Lactoferrina/análise , Lactoferrina/metabolismo , Leite/química , Leite/metabolismo , Bovinos
5.
Semin Arthritis Rheum ; 65: 152387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330740

RESUMO

Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.


Assuntos
Doenças Autoimunes , Imunodeficiência de Variável Comum , Doenças Reumáticas , Humanos , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/diagnóstico , Imunodeficiência de Variável Comum/genética , Imunoglobulinas Intravenosas/uso terapêutico , Doenças Autoimunes/complicações , Testes Genéticos , Doenças Reumáticas/tratamento farmacológico
6.
Clin Immunol ; 258: 109854, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013164

RESUMO

The original CRISPR Cas9 gene editing system and subsequent innovations offers unprecedented opportunities to correct severe genetic defects including those causing Primary Immunodeficiencies (PIDs). Common Variable Immunodeficiency Disorders (CVID) are the most frequent symptomatic PID in adults and children. Unlike many other PIDs, patients meeting CVID criteria do not have a definable genetic defect and cannot be considered to have an inborn error of immunity (IEI). Patients with a CVID phenotype carrying a causative mutation are deemed to have a CVID-like disorder consequent to an IEI. Patients from consanguineous families often have highly penetrant early-onset autosomal recessive forms of CVID-like disorders. Individuals from non-consanguineous families may have autosomal dominant CVID-like disorders with variable penetrance and expressivity. This essay explores the potential clinical utility as well as the current limitations and risks of gene editing including collateral genotoxicity. In the immediate future the main application of this technology is likely to be the in vitro investigation of epigenetic and polygenic mechanisms, which are likely to underlie many cases of CVID and CVID-like disorders. In the longer-term, the CRISPR Cas9 system and other gene-based therapies could be utilized to treat CVID-like disorders, where the underlying IEI is known.


Assuntos
Imunodeficiência de Variável Comum , Adulto , Criança , Humanos , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/terapia , Edição de Genes , Fenótipo , Epigenômica
7.
Mol Genet Genomic Med ; 12(1): e2350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146907

RESUMO

BACKGROUND: Haploinsufficiency of the Lysine Methyltransferase 2C (KMT2C) gene results in the autosomal dominant disorder, Kleefstra syndrome 2. It is an extremely rare neurodevelopmental condition, with 14 previous reports describing varied clinical manifestations including dysmorphic features, delayed psychomotor development and delayed growth. METHODS: Here, we describe a female with global developmental delay, attention deficit disorder, dyspraxia, short stature and subtle non-specific dysmorphic features. To identify causative mutations, whole exome sequencing was performed on the proband and her younger brother with discrete clinical presentation. RESULTS: Whole exome sequencing identified a novel de novo heterozygous 11 bp deletion in KMT2C (c.1759_1769del), resulting in a frameshift mutation and early termination of the protein (p.Gln587SerfsTer7). This variant is the second-most N-terminal reported mutation, located 4171 amino acids upstream of the critical enzymatically active SET domain (required for chromatin modification and histone methylation). CONCLUSION: The majority of the other reported mutations are frameshift mutations upstream of the SET domain and are predicted to result in protein truncation. It is thought that truncation of the SET domain, results functionally in an inability to modify chromatin through histone methylation. This report expands the clinical and genetic characterisation of Kleefstra syndrome 2.


Assuntos
Deleção Cromossômica , Anormalidades Craniofaciais , Cardiopatias Congênitas , Histonas , Deficiência Intelectual , Feminino , Humanos , Masculino , Pareamento de Bases , Cromatina , Cromossomos Humanos Par 9 , Histonas/genética , Deficiência Intelectual/genética
8.
J Neuromuscul Dis ; 10(6): 1127-1141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638449

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with genetic and phenotypic heterogeneity. Pathogenic genetic variants remain the only validated cause of disease, the majority of which were discovered in familial ALS patients. While causal gene variants are a lesser contributor to sporadic ALS, an increasing number of risk alleles (low penetrance genetic variants associated with a small increase in disease risk) and variants of uncertain significance have been reported. OBJECTIVE: To examine the pathogenic potential of genetic variation in ALS, we sought to characterise variant- and gene-level attributes of previously reported ALS-implicated variants. METHODS: A list of 1,087 genetic variants reported in ALS to March 2021 was compiled through comprehensive literature review. Individual variants were annotated using in silico tools and databases across variant features including pathogenicity scores, localisation to protein domains, evolutionary conservation, and minor allele frequencies. Gene level attributes of genic tolerance, gene expression in ALS-relevant tissues and gene ontology terms were assessed for 33 ALS genes. Statistical analysis was performed for each characteristic, and we compared the most penetrant variants found in familial cases with risk alleles exclusive to sporadic cases, to explore genetic variant features that associate with disease penetrance. RESULTS: We provide spreadsheet (hg19 and GRCh38) and variant call format (GRCh38) resources for all 1,087 reported ALS-implicated variants, including detailed summaries for each attribute. We demonstrate that the characteristics of variants found exclusively in sporadic ALS cases are less severe than those observed in familial ALS. CONCLUSIONS: We provide a comprehensive, literature-derived catalogue of genetic variation in ALS thus far and reveal crucial attributes that contribute to ALS pathogenicity. Our variant- and gene-level observations highlight the complexity of genetic variation in ALS, and we discuss important implications and considerations for novel variant interpretation.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Frequência do Gene
9.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629202

RESUMO

Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Doença de Huntington , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Núcleo Caudado , Efeito Citopatogênico Viral , Dopamina , Proteínas Mutantes
10.
Clin Exp Immunol ; 214(3): 289-295, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37565297

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease of 2019 (COVID-19), has caused havoc around the world. While several COVID-19 vaccines and drugs have been authorized for use, these antiviral drugs remain beyond the reach of most low- and middle-income countries. Rapid viral evolution is reducing the efficacy of vaccines and monoclonal antibodies and contributing to the deaths of some fully vaccinated persons. Others with normal immunity may have chosen not to be vaccinated and remain at risk if they contract the infection. Vaccines may not protect some immunodeficient patients from SARS-CoV-2, who are also at increased risk of chronic COVID-19 infection, a dangerous stalemate between the virus and a suboptimal immune response. Intra-host viral evolution could rapidly lead to the selection and dominance of vaccine and monoclonal antibody-resistant clades of SARS-CoV-2. There is thus an urgent need to develop new treatments for COVID-19. The NZACE2-Patari project, comprising modified soluble angiotensin-converting enzyme 2 (ACE2) molecules, seeks to intercept and block SARS-CoV-2 infection of the respiratory mucosa. In vitro data presented here show that soluble wild-type ACE2 molecules retain the ability to effectively block the Spike (S) glycoprotein of SARS-CoV-2 variants including the ancestral Wuhan, delta (B.1.617.2) and omicron (B.1.1.529) strains. This therapeutic strategy may prove effective if implemented early during the nasal phase of the infection and may act synergistically with other antiviral drugs such as Paxlovid to further mitigate disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Vacinas contra COVID-19 , Peptidil Dipeptidase A , Antivirais/uso terapêutico , Antivirais/farmacologia , Gravidade do Paciente
11.
JIMD Rep ; 64(3): 223-232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37151360

RESUMO

Disorders of mitochondrial function are a collectively common group of genetic diseases in which deficits in core mitochondrial translation machinery, including aminoacyl tRNA synthetases, are key players. Biallelic variants in the CARS2 gene (NM_024537.4), which encodes the mitochondrial aminoacyl-tRNA synthetase for cysteine (CARS2, mt-aaRScys; MIM*612800), result in childhood onset epileptic encephalopathy and complex movement disorder with combined oxidative phosphorylation deficiency (MIM#616672). Prior to this report, eight unique pathogenic variants in the CARS2 gene had been reported in seven individuals. Here, we describe a male who presented in the third week of life with apnoea. He rapidly deteriorated with paroxysmal dystonic crises and apnoea resulting in death at 16 weeks. He had no evidence of seizure activity or multisystem disease and had normal brain imaging. Skeletal muscle biopsy revealed a combined disorder of oxidative phosphorylation. Whole-exome sequencing identified biallelic variants in the CARS2 gene: one novel (c.1478T>C, p.Phe493Ser), and one previously reported (c.655G>A, p.Ala219Thr; rs727505361). Northern blot analysis of RNA isolated from the patient's fibroblasts confirmed a clear defect in aminoacylation of the mitochondrial tRNA for cysteine (mt-tRNACys). To our knowledge, this is the earliest reported case of CARS2 deficiency with severe, early onset dystonia and apnoea, without epilepsy.

12.
NAR Genom Bioinform ; 5(2): lqad032, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37007589

RESUMO

Complex biological traits and disease often involve patterns of gene expression that can be characterised and examined. Here we present ICARUS v2.0, an update to our single cell RNA-seq analysis web server with additional tools to investigate gene networks and understand core patterns of gene regulation in relation to biological traits. ICARUS v2.0 enables gene co-expression analysis with MEGENA, transcription factor regulated network identification with SCENIC, trajectory analysis with Monocle3, and characterisation of cell-cell communication with CellChat. Cell cluster gene expression profiles may be examined against Genome Wide Association Studies with MAGMA to find significant associations with GWAS traits. Additionally, differentially expressed genes may be compared against the Drug-Gene Interaction database (DGIdb 4.0) to facilitate drug discovery. ICARUS v2.0 offers a comprehensive toolbox of the latest single cell RNA-seq analysis methodologies packed into an efficient, user friendly, tutorial style web server application (accessible at https://launch.icarus-scrnaseq.cloud.edu.au/) that enables single cell RNA-seq analysis tailored to the user's dataset.

13.
J Allergy Clin Immunol Pract ; 11(6): 1646-1664, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36796510

RESUMO

The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.


Assuntos
Agamaglobulinemia , Imunodeficiência de Variável Comum , Humanos , Imunodeficiência de Variável Comum/diagnóstico , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/complicações , Mutação/genética , Fenótipo , Agamaglobulinemia/complicações
14.
J Allergy Clin Immunol Pract ; 11(1): 181-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241155

RESUMO

SARS-CoV-2, the agent responsible for COVID-19, has wreaked havoc around the globe. Hundreds of millions of individuals have been infected and well over six million have died from COVID-19. Many COVID-19 survivors have ongoing physical and psychiatric morbidity, which will remain for the rest of their lives. Early in the pandemic, it became apparent that older individuals and those with comorbidities including obesity, diabetes mellitus, coronary artery disease, hypertension, and renal and pulmonary disease were at increased risk of adverse outcomes. It is also clear that some immunodeficient patients, such as those with innate or T cell-immune defects, are at greater risk from COVID-19. Selective IgA deficiency (sIgAD) is generally regarded as a mild disorder in which most patients are asymptomatic because of redundancy in protective immune mechanisms. Recent data indicate that patients with sIgAD may be at high risk of severe COVID-19. SARS-CoV-2 gains entry primarily through the upper respiratory tract mucosa, where IgA has a critical protective role. This may underlie the vulnerability of sIgAD patients to adverse outcomes from COVID-19. This perspective highlights the need for ongoing research into mucosal immunity to improve COVID-19 treatments for patients with sIgAD.


Assuntos
COVID-19 , Deficiência de IgA , Humanos , SARS-CoV-2 , Fatores de Risco
15.
J Clin Pathol ; 75(12): 793-797, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216482

RESUMO

After almost 3 years of intense study, the immunological basis of COVID-19 is better understood. Patients who suffer severe disease have a chaotic, destructive immune response. Many patients with severe COVID-19 produce high titres of non-neutralising antibodies, which are unable to sterilise the infection. In contrast, there is increasing evidence that a rapid, balanced cellular immune response is required to eliminate the virus and mitigate disease severity. In the longer term, memory T cell responses, following infection or vaccination, play a critical role in protection against SARS-CoV-2.Given the pivotal role of cellular immunity in the response to COVID-19, diagnostic T cell assays for SARS-CoV-2 may be of particular value for immunodeficient patients. A diagnostic SARS-CoV-2 T cell assay would be of utility for immunocompromised patients who are unable to produce antibodies or have passively acquired antibodies from subcutaneous or intravenous immunoglobulin (SCIG/IVIG) replacement. In many antibody-deficient patients, cellular responses are preserved. SARS-CoV-2 T cell assays may identify breakthrough infections if reverse transcriptase quantitative PCR (RT-qPCR) or rapid antigen tests (RATs) are not undertaken during the window of viral shedding. In addition to utility in patients with immunodeficiency, memory T cell responses could also identify chronically symptomatic patients with long COVID-19 who were infected early in the pandemic. These individuals may have been infected before the availability of reliable RT-qPCR and RAT tests and their antibodies may have waned. T cell responses to SARS-CoV-2 have greater durability than antibodies and can also distinguish patients with infection from vaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Anticorpos Antivirais , Pandemias , Síndrome de COVID-19 Pós-Aguda
16.
Front Genet ; 13: 869160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664313

RESUMO

Omeprazole is extensively used to manage gastroesophageal reflux disease (GERD). It is primarily metabolized by CYP2C19. The CYP2C19*17 (rs12248560) allele and the recently described CYP2C:TG haplotype (rs11188059 and rs2860840) are associated with increased enzymatic activity, and may reduce omeprazole exposure. This observational study aimed to investigate the association between these genetic variants and omeprazole treatment failure in GERD. We recruited predominantly New Zealand European GERD patients who either did not respond to omeprazole or experienced breakthrough heartburn symptoms despite at least 8 weeks of omeprazole (≥40 mg/day). The GerdQ score was used to gauge symptomatic severity. A total of 55 cases were recruited with a median age (range) of 56 years (19-82) and GerdQ score of 11 (5-17). Of these, 19 (34.5%) were CYP2C19*17 heterozygotes and two (3.6%) were CYP2C19*17 homozygotes. A total of 30 (27.3%) CYP2C:TG haplotypes was identified in our cohort, with seven (12.7%) CYP2C:TG homozygotes, and 16 (29%) CYP2C:TG heterozygotes. No significant differences were observed for overall CYP2C19*17 alleles, CYP2C19*17/*17, overall CYP2C:TG haplotypes, and CYP2C:TG heterozygotes (p > 0.05 for all comparisons). Gastroscopy and 24-h esophageal pH/impedance tests demonstrated objective evidence of GERD in a subgroup of 39 (71%) cases, in which the CYP2C:TG/TG was significantly enriched (p = 0.03) when compared with the haplotype frequencies in a predominantly (91%) New Zealand European reference population, but not the CYP2C19*17/*17 (p > 0.99), when compared with the allele frequencies for the non-Finnish European subset of gnomAD. We conclude that omeprazole treatment failure in GERD is associated with CYP2C:TG/TG, but not CYP2C19*17.

17.
BMC Bioinformatics ; 23(1): 257, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768792

RESUMO

BACKGROUND: Addressing the laborious nature of traditional biological experiments by using an efficient computational approach to analyze RNA-binding proteins (RBPs) binding sites has always been a challenging task. RBPs play a vital role in post-transcriptional control. Identification of RBPs binding sites is a key step for the anatomy of the essential mechanism of gene regulation by controlling splicing, stability, localization and translation. Traditional methods for detecting RBPs binding sites are time-consuming and computationally-intensive. Recently, the computational method has been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the sequence data of RNA but also need additional data, for example the secondary structural data of RNA, to improve the performance of prediction, which needs the pre-work to prepare the learnable representation of structural data. RESULTS: To reduce the dependency of those pre-work, in this paper, we introduce DeepPN, a deep parallel neural network that is constructed with a convolutional neural network (CNN) and graph convolutional network (GCN) for detecting RBPs binding sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, followed by a fully connected layer to make the prediction. DeepPN discriminates the RBP binding sites on learnable representation of RNA sequences, which only uses the sequence data without using other data, for example the secondary or tertiary structure data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other state-of-the-art methods. The results show that the performance of DeepPN is comparable to the published methods. CONCLUSION: The experimental results show that DeepPN can effectively capture potential hidden features in RBPs and use these features for effective prediction of binding sites.


Assuntos
Redes Neurais de Computação , RNA , Sítios de Ligação , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
J Allergy Clin Immunol Pract ; 10(9): 2267-2273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752434

RESUMO

COVID-19 has had a disastrous impact on the world. Apart from at least 6 million deaths, countless COVID-19 survivors are suffering long-term physical and psychiatric morbidity. Hundreds of millions have been plunged into poverty caused by economic misery, particularly in developing nations. Early in the pandemic, it became apparent certain groups of individuals such as the elderly and those with comorbidities were more likely to suffer severe disease. In addition, patients with some forms of immunodeficiency, including those with T-cell and innate immune defects, were at risk of poor outcomes. Patients with immunodeficiencies are also disadvantaged as they may not respond optimally to COVID-19 vaccines and often have pre-existing lung damage. SARS-CoV-2 Omicron (B.1.529) and its subvariants (BA.1, BA.2, etc) have emerged recently and are dominating COVID-19 infections globally. Omicron is associated with a reduced risk of hospitalization and appears to have a lower case fatality rate compared with previous SARS-CoV-2 variants. Omicron has offered hope the pandemic may finally be coming to an end, particularly for vaccinated, healthy individuals. The situation is less clear for individuals with vulnerabilities, particularly immunodeficient patients. This perspective offers insight into potential implications of the SARS-CoV-2 Omicron variant for patients with immunodeficiencies.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , COVID-19/epidemiologia , Vacinas contra COVID-19 , Humanos , Pandemias
19.
Nucleic Acids Res ; 50(W1): W427-W433, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536286

RESUMO

Here we present ICARUS, a web server to enable users without experience in R to undertake single cell RNA-seq analysis. The focal point of ICARUS is its intuitive tutorial-style user interface, designed to guide logical navigation through the multitude of pre-processing, analysis and visualization steps. ICARUS is easily accessible through a dedicated web server (https://launch.icarus-scrnaseq.cloud.edu.au/) and avoids installation of software on the user's computer. Notable features include the facility to apply quality control thresholds and adjust dimensionality reduction and cell clustering parameters. Data is visualized through 2D/3D UMAP and t-SNE plots and may be curated to remove potential confounders such as cell cycle heterogeneity. ICARUS offers flexible differential expression analysis with user-defined cell groups and gene set enrichment analysis to identify likely affected biological pathways. Eleven organisms including human, dog, mouse, rat, zebrafish, fruit fly, nematode, yeast, cattle, chicken and pig are currently supported. Visualization of multimodal data including those generated by CITE-seq and the 10X Genomics Multiome kit is included. ICARUS incorporates a function to save the current state of analysis avoiding computationally intensive steps during repeat analysis. The complete analysis of a typical single cell RNA-seq dataset by inexperienced users may be achieved in 1-2 h.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Software , Animais , Bovinos , Cães , Humanos , Camundongos , Ratos , Computadores , Genômica , Suínos , Peixe-Zebra
20.
Expert Rev Clin Immunol ; 18(6): 557-565, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510369

RESUMO

INTRODUCTION: COVID-19 has had a calamitous impact on the global community. Apart from at least 6 M deaths, hundreds of millions have been infected and a much greater number have been plunged into poverty. Vaccines have been effective but financial and logistical challenges have hampered their rapid global deployment. Vaccine disparities have allowed the emergence of new SARS-CoV-2 variants including delta and omicron, perpetuating the pandemic. AREAS COVERED: The immunological response to SARS-CoV-2 is now better understood. Many of the clinical manifestations of severe disease are a consequence of immune dysregulation triggered by the virus. This may explain the lack of efficacy of antiviral treatments, such as convalescent plasma infusions, given later in the disease. EXPERT OPINION: T cells play a crucial role in both the outcome of COVID-19 as well as the protective response to vaccines. Vaccines do not prevent infection but reduce the risk of a chaotic and destructive cellular immune response to the virus. Severe COVID-19 should be considered a virus-induced secondary immune dysregulatory disorder of cellular immunity, with broad host susceptibility. This perspective of COVID-19 will lead to better diagnostic tests, vaccines, and therapeutic strategies in the future.


Assuntos
COVID-19 , Doenças do Sistema Imunitário , Vacinas , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2 , Linfócitos T , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...