Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 354(6316): 1128-1130, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934760

RESUMO

The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

2.
Nature ; 467(7318): 940-2, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20962840

RESUMO

Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.

3.
Nature ; 442(7104): 786-9, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16915282

RESUMO

Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...