Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576040

RESUMO

BACKGROUND: To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS: We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS: Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS: Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Virulência/genética , Fatores Imunológicos/metabolismo , Tiorredoxinas/genética
2.
Mol Immunol ; 121: 118-126, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199211

RESUMO

Foot-and-mouth disease (FMD) is an acute, severe, and highly contagious disease that affects cloven-hoofed animals and can lead to serious economic losses and social effects. Therefore, a safe and effective subunit vaccine is required to prevent and control FMD. Dendritic cells (DCs) are a type of professional antigen presenting cell (APC). Immature DCs are typically stimulated by various adjuvants via immune receptors (e.g., toll-like receptor 4 [TLR4]), which activate DCs to induce their maturation. TLR4 has been well-established to induce both innate and adaptive immune responses to various external microbial or internal damage-related molecular patterns. In this study, the multi-epitope immunogen, HAO, of foot-and-mouth disease virus (FMDV) serotypes A and O was fused with the recombinant protein, heparin-binding hemagglutinin (HBHA), a novel TLR4 agonist, to obtain a new recombinant fusion protein, termed HAO-HBHA. HAO-HBHA was found to be highly efficient at activating murine DCs by the TLR4 pathway, both in vitro and in vivo. HAO-HBHA elicited strong specific humoral immune responses detected with an ELISA and virus neutralizing antibody test (VNT). HAO-HBHA also elevated the cellular immune responses, as indicated by intracellular cytokine (e.g., IFN-γ, TNF-α, IL-4, IL-6, IL-10, and IL-12p70) expression in Th1 and Th2 cells. As a TLR4 agonist, HBHA has significant advantages for enhancing the immune efficacy of a FMDV serotype A and O bivalent multi-epitope vaccine. These findings provide a novel strategy for the development of a safe and effective multi-epitope vaccine candidate against FMDV and further extends the application of TLR agonist-based vaccine platforms.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Lectinas/farmacologia , Vacinas Virais/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Febre Aftosa/sangue , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Imunidade Celular , Imunogenicidade da Vacina , Lectinas/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Sorogrupo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
3.
J Med Virol ; 91(12): 2142-2152, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31347713

RESUMO

Recently, many countries, including China, have experienced a series of type A and O foot-and-mouth disease virus (FMDV) epidemics, causing serious economic losses. Although concerns about the safety of inactivated FMD vaccines have been raised, the development of a safe and effective subunit vaccine is necessary. We constructed two chimeric virus-like particles (VLPs; rHBc/AO and rHBc/AOT VLPs) displaying tandem repeats of B cell epitopes (VP1 residue 134-161 and 200-213) derived from type A and O FMDV and one T cell epitope (3 A residue 21-35) using the truncated hepatitis B virus core (HBc) carrier. Our results indicate that the chimeric HBc can self-assemble into VLPs with these FMDV epitopes displayed on the surface. Immunization with the chimeric VLPs induced specific IgG and neutralization antibodies against type A and O FMDV in mice. Compared with the commercial type A/O FMDV bivalent inactivated vaccine, rHBc/AO and rHBc/AOT VLPs significantly stimulated the production of Th1 type cytokines (IFN-γ and IL-2), whereas Th2 cytokine production (IL-4 and IL-10) was decreased. Compared with rHBc/AO, rHBc/AOT induced increased Th2 cytokine and specific IgG production. These results demonstrate that the VLPs constructed in the current study induced both humoral and cellular immune responses and may represent potential bivalent VLP vaccines targeting both FMDV type A and O strains.


Assuntos
Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Hepatite B/imunologia , Proteínas do Core Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citocinas/imunologia , Feminino , Vírus da Febre Aftosa/química , Vírus da Hepatite B/química , Imunoglobulina G/sangue , Camundongos , Organismos Livres de Patógenos Específicos , Células Th1/imunologia , Células Th2/imunologia , Vacinação , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Core Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA