Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7614, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223131

RESUMO

Astronomical precision spectroscopy underpins searches for life beyond Earth, direct observation of the expanding Universe and constraining the potential variability of physical constants on cosmological scales. Laser frequency combs can provide the required accurate and precise calibration to the astronomical spectrographs. For cosmological studies, extending the calibration with such astrocombs to the ultraviolet spectral range is desirable, however, strong material dispersion and large spectral separation from the established infrared laser oscillators have made this challenging. Here, we demonstrate astronomical spectrograph calibration with an astrocomb in the ultraviolet spectral range below 400 nm. This is accomplished via chip-integrated highly nonlinear photonics in periodically-poled, nano-fabricated lithium niobate waveguides in conjunction with a robust infrared electro-optic comb generator, as well as a chip-integrated microresonator comb. These results demonstrate a viable route towards astronomical precision spectroscopy in the ultraviolet and could contribute to unlock the full potential of next-generation ground-based and future space-based instruments.

2.
Nat Photonics ; 17(11): 992-999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920810

RESUMO

Laser frequency combs are enabling some of the most exciting scientific endeavours in the twenty-first century, ranging from the development of optical clocks to the calibration of the astronomical spectrographs used for discovering Earth-like exoplanets. Dissipative Kerr solitons generated in microresonators currently offer the prospect of attaining frequency combs in miniaturized systems by capitalizing on advances in photonic integration. Most of the applications based on soliton microcombs rely on tuning a continuous-wave laser into a longitudinal mode of a microresonator engineered to display anomalous dispersion. In this configuration, however, nonlinear physics precludes one from attaining dissipative Kerr solitons with high power conversion efficiency, with typical comb powers amounting to ~1% of the available laser power. Here we demonstrate that this fundamental limitation can be overcome by inducing a controllable frequency shift to a selected cavity resonance. Experimentally, we realize this shift using two linearly coupled anomalous-dispersion microresonators, resulting in a coherent dissipative Kerr soliton with a conversion efficiency exceeding 50% and excellent line spacing stability. We describe the soliton dynamics in this configuration and find vastly modified characteristics. By optimizing the microcomb power available on-chip, these results facilitate the practical implementation of a scalable integrated photonic architecture for energy-efficient applications.

3.
Opt Lett ; 48(15): 3949-3952, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527090

RESUMO

Lithium niobate (LN) is a promising material for future complex photonic-electronic circuits, with wide applications in such fields as communications, sensing, quantum optics, and computation. LN took a great stride toward compact photonic integrated circuits (PICs) with the development of partially etched LN on insulator (LNOI) waveguides. However, integration density is still limited for future highly compact PICs, owing to the partial etching nature of their waveguides. Here, we demonstrate a fully etched LN PIC platform, which, for the first time to our knowledge, simultaneously achieves ultralow propagation loss and compact circuit size. The tightly confined fully etched LN waveguides with smooth sidewalls allow us to bring the bending radius down to 20 µm (corresponding to 1 THz free spectral range). We have achieved compact high Q microring resonators with Q/V of 8.7 × 104 µm-3, almost one order of magnitude larger than previous demonstrations. The statistical mean propagation losses of our LN waveguides is 8.5 dB/m (corresponding to a mean Q factor of 4.9 × 106), even with a small bending radius of 40 µm. Our compact and ultralow-loss LN platform shows great potential in future miniaturized multifunctional integration systems. As complementary evidence to show the utility of our platform, we demonstrate soliton microcombs with an ultrahigh repetition rate of 500 GHz in LN.

4.
Phys Rev Lett ; 130(9): 093801, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930933

RESUMO

Optical hyperparametric oscillation based on the third-order nonlinearity is one of the most significant mechanisms to generate coherent electromagnetic radiation and produce quantum states of light. Advances in dispersion-engineered high-Q microresonators allow for generating signal waves far from the pump and decrease the oscillation power threshold to submilliwatt levels. However, the pump-to-signal conversion efficiency and absolute signal power are low, fundamentally limited by parasitic mode competition and attainable cavity intrinsic Q to coupling Q ratio, i.e., Q_{i}/Q_{c}. Here, we use Friedrich-Wintgen bound states in the continuum (BICs) to overcome the physical challenges in an integrated microresonator-waveguide system. As a result, on-chip coherent hyperparametric oscillation is generated in BICs with unprecedented conversion efficiency and absolute signal power. This work not only opens a path to generate high-power and efficient continuous-wave electromagnetic radiation in Kerr nonlinear media but also enhances the understanding of a microresonator-waveguide system-an elementary unit of modern photonics.

5.
Opt Lett ; 47(13): 3351-3354, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776628

RESUMO

Measuring microcombs in amplitude and phase provides unique insight into the nonlinear cavity dynamics, but spectral phase measurements are experimentally challenging. Here, we report a linear heterodyne technique assisted by electro-optic downconversion that enables differential phase measurement of such spectra with unprecedented sensitivity (-50 dBm) and bandwidth coverage (>110 nm in the telecommunications range). We validate the technique with a series of measurements, including single-cavity and photonic molecule microcombs.

6.
Nat Commun ; 13(1): 3161, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672308

RESUMO

Soliton microcombs provide a versatile platform for realizing fundamental studies and technological applications. To be utilized as frequency rulers for precision metrology, soliton microcombs must display broadband phase coherence, a parameter characterized by the optical phase or frequency noise of the comb lines and their corresponding optical linewidths. Here, we analyse the optical phase-noise dynamics in soliton microcombs generated in silicon nitride high-Q microresonators and show that, because of the Raman self-frequency shift or dispersive-wave recoil, the Lorentzian linewidth of some of the comb lines can, surprisingly, be narrower than that of the pump laser. This work elucidates information about the physical limits in phase coherence of soliton microcombs and illustrates a new strategy for the generation of spectrally coherent light on chip.

7.
Opt Express ; 30(6): 8641-8651, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299311

RESUMO

Spectral broadening of optical frequency combs with high repetition rate is of significant interest in optical communications, radio-frequency photonics and spectroscopy. Silicon nitride waveguides (Si3N4) in the anomalous dispersion region have shown efficient supercontinuum generation spanning an octave-bandwidth. However, the broadening mechanism in this regime is usually attained with femtosecond pulses in order to maintain the coherence. Supercontinuum generation in the normal dispersion regime is more prone to longer (ps) pulses, but the implementation in normal dispersion silicon nitride waveguides is challenging as it possesses strong requirements in propagation length and losses. Here, we experimentally demonstrate the use of a Si3N4 waveguide to perform coherent spectral broadening using pulses in the picosecond regime with high repetition rate. Moreover, our work explores the formation of optical wave breaking using a higher energy pulse which enables the generation of a coherent octave spanning spectrum. These results offer a new prospect for coherent broadening using long duration pulses and replacing bulky optical components.

8.
Opt Lett ; 47(3): 513-516, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103664

RESUMO

Thermal noise usually dominates the low-frequency region of the optical phase noise of soliton microcombs, which leads to decoherence that limits many aspects of applications. In this work, we demonstrate a simple and reliable way to mitigate this noise by laser cooling with a pump laser. The key is rendering the pump laser to simultaneously excite two neighboring cavity modes from different families that are respectively red and blue detuned, one for soliton generation and the other for laser cooling.

9.
Phys Rev Lett ; 124(10): 103902, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216405

RESUMO

Cavity input-output relations (CIORs) describe a universal formalism relating each of the far-field amplitudes outside the cavity to the internal cavity fields. Conventionally, they are derived based on a weak-scattering approximation. In this context, the amplitude of the off-resonant field remains nearly unaffected by the cavity, with the high coupling efficiency into cavity modes being attributed to destructive interference between the transmitted (or reflected) field and the output field from the cavity. In this Letter, we show that, in a whispering gallery resonator-waveguide coupled system, in the strong-scattering regime, the off-resonant field approaches to zero, but more than 90% coupling efficiency can still be achieved due to the Purcell-enhanced channeling. As a result, the CIORs turn out to be essentially different than in the weak-scattering regime. With this fact, we propose that the CIOR can be tailored by controlling the scattering strength. This is experimentally demonstrated by the transmission spectra exhibiting either bandstop or bandpass-type behavior according to the polarization of the input light field.

10.
Opt Lett ; 44(13): 3386-3389, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259967

RESUMO

We demonstrate the excitation and detection of whispering gallery modes in optical microresonators using a "point-and-play," fiber-based, optical nano-antenna. The coupling mechanism is based on cavity-enhanced Rayleigh scattering. Collected spectra exhibit Lorentzian dips, Fano shapes, or Lorentzian peaks, with a coupling efficiency around 13%. The spectra are characterized by the coupling gap, polarization, and fiber tip position. The coupling method is simple, low-cost and, most importantly, the Q-factor can be maintained at 108 over a wide coupling range, thereby making it suitable for metrology, sensing, or cavity quantum electrodynamics experiments.

11.
Opt Express ; 25(20): 24679-24689, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041414

RESUMO

A pump source is one of the essential prerequisites in order to achieve lasing in a system, and, in most cases, a stronger pump leads to higher laser power at the output. However, this behavior may be suppressed if two pump beams are used. In this work, we show that lasing around the 1600 nm band can be suppressed completely if two pumps, at wavelengths of 980 nm and 1550 nm, are applied simultaneously to an Yb:Er-doped microlaser, whereas it can be revived by switching one of them off. This phenomenon can be explained by assuming that the presence of one pump (980 nm) changes the role of the other pump (1550 nm); more specifically, the 1550 nm pump starts to consume the population inversion instead of increasing it when the 980 nm pump power exceeds a certain value. As a result, the two pump fields lead to a closed-loop transition within the gain medium (i.e., the erbium ions). This study unveils an interplay similar to coherence effects between different pump pathways, thereby providing a reference for designing the laser pump, and may have applications in lasing control.

12.
Opt Express ; 25(12): 13101-13106, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788847

RESUMO

A tunable, all-optical, coupling method is realised for a high-Q silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 211 mW is observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.61 ± 0.13) - (3.49 ± 0.13) µm and nanometer scale sensitivities varying from (2.81 ± 0.08) - (17.08 ± 0.76) nm/mW, with an apparent linear dependency of coupling distance on stem laser heating, are obtained. Using this method, the coupling is altered such that the different coupling regimes are achieved.

13.
Opt Express ; 25(2): 1308-1313, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158014

RESUMO

In this work, we show that the application of a sol-gel coating renders a microbubble whispering gallery resonator into an active device. During the fabrication of the resonator, a thin layer of erbium-doped sol-gel is applied to a tapered microcapillary, then a microbubble with a wall thickness of 1.3 µm is formed with the rare earth ions diffused into its wall. The doped microbubble is pumped at 980 nm and lases in the emission band of the Er3+ ions at 1535 nm. The laser wavelength can be shifted by aerostatic pressure tuning of the whispering gallery modes of the microbubble. Up to 240 pm tuning is observed with 2 bar of applied pressure. We also show that the doped microbubble could be used as a compact, tunable laser source.

14.
Opt Lett ; 41(15): 3603-6, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472629

RESUMO

Fabricating an optical microresonator with precise resonant wavelength is of significant importance for fundamental research and practical applications. Here, we develop an effective method to fabricate ultra-high Q microtoroid with picometer-precise resonant wavelength. Our method adds a tuning reflow process, using low-power CO2 laser pulses, to the traditional fabrication process. It can tailor resonant wavelength to a red or blue direction by choosing a proper laser power. Also, this shift can be controlled by the exposure time. Meanwhile, quality factor remains nearly unchanged during this tailoring process. Our method can greatly reduce the difficulties of experiments where precise resonances are required.

15.
Opt Express ; 24(9): 9550-60, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137568

RESUMO

Precise control of resonance features in microcavities is of significant importance both for researches and applications. By exploiting gain provided by the doped rare earth ions or Raman gain, this can be achieved through changing the pump. Here we propose and experimentally show that by using gain competition, one can also control the evolution of resonance for the probe signal while the pump is kept unchanged. The transition of Lorentz peak, Fano-like resonance and Lorentz dip can be observed from the transmission spectra of the probe signal through tuning the auxiliary control signal. The theory based on coupled-mode theory and laser rate equations by setting the optical gains as time-dependent was constructed. This method can be used in the precise control of transmission spectra and the coupling regime between the waveguide and microcavities.

16.
Opt Express ; 23(23): 29573-83, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698440

RESUMO

Waveguide-coupled optical resonators have played an important role in a wide range of applications including optical communication, sensing, nonlinear optics, slow/fast light, and cavity QED. In such a system, the coupling regimes strongly affect the resonance feature in the light transmission spectra, and hence the performance and outcomes of the applications. Therefore it is crucial to control the coupling between the waveguide and the microresonator. In this work, we investigated a fiber-taper coupled whispering-gallery-mode microresonator system, in which the coupling regime is traditionally controlled by adjusting the distance between the resonator and the fiber-taper mechanically. We propose and experimentally demonstrate that by utilizing Raman gain one can achieve on-demand control of the coupling regime without any mechanical movement in the resonator system. Particularly, the application of Raman gain is accompanied by Q enhancement. We also show that with the help of Raman gain control, the transitions between various coupling regimes can affect the light transmission spectra so as to provide better resolvability and signal amplification. This all-optical approach is also suitable for monolithically integrated and packaged waveguide-resonator systems, whose coupling regime is fixed at the time of manufacturing. It provides an effective route to control the light transmission in a waveguide-couple resonator system without mechanically moving individual optical components.

17.
Opt Express ; 23(9): 11508-17, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969245

RESUMO

Recently Qu and Agarwal [Phys. Rev. A 22, 031802 (2013)] found a three-pathway electromagnetically induced absorption (TEIA) phenomenon within a mechanically coupled two-cavity system, where there exist a sharp EIA dip in the broad electromagnetically induced transparency peak in the transmission spectrum. In this work, we study the response of a probe light in a pair of directly coupled microcavities with one mechanical mode. We find that in addition to the sharp TEIA dip within a broad EIT window as found by Qu and Agarwal, three-pathway electromagnetically induced transparency (TEIT) within the broad EIT window could also exist under certain conditions. We give explicit physical explanations and detailed calculations. Our results provide a method for controlling transition between TEIA and TEIT in coupled optomechanical systems, and reveal the multiple pathways interference is versatile for controlling light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA