Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2301, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485746

RESUMO

Atomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin-orbit polarons in a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling microscope. We achieve the step-by-step repair of the selected vacancies, leading to the formation of artificial sulfur vacancies with elaborate geometry. We find that that the bound states localized around these vacancies undergo a symmetry dependent energy shift towards Fermi level with increasing vacancy size. As the vacancy size increases, the localized magnetic moments of spin-orbit polarons become tunable and eventually become itinerantly negative due to spin-orbit coupling in the kagome flat band. These findings provide a platform for engineering atomic quantum states in topological quantum materials at the atomic scale.

2.
Small ; : e2311430, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444270

RESUMO

Effectively tuning magnetic state by using current is essential for novel spintronic devices. Magnetic van der Waals (vdW) materials have shown superior properties for the applications of magnetic information storage based on the efficient spin torque effect. However, for most of known vdW ferromagnets, the ferromagnetic transition temperatures lower than room temperature strongly impede their applications and the room-temperature vdW spintronic device with low energy consumption is still a long-sought goal. Here, the highly efficient room-temperature nonvolatile magnetic switching is realized by current in a single-material device based on vdW ferromagnet Fe3 GaTe2 . Moreover, the switching current density and power dissipation are about 300 and 60000 times smaller than conventional spin-orbit-torque devices of magnet/heavy-metal heterostructures. These findings make an important progress on the applications of magnetic vdW materials in the fields of spintronics and magnetic information storage.

3.
Adv Mater ; 36(19): e2309538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366361

RESUMO

Topological magnetic textures are promising candidates as binary data units for the next-generation memory device. The precise generation and convenient control of nontrivial spin topology at zero field near room temperature endows the critical advantages in skyrmionic devices but is not simultaneously integrated into one material. Here, in the Kagome plane of quantum TbMn6Sn6, the expedient generation of the skyrmion bubbles in versatile forms of lattice, chain, and isolated one by converging the electron beam, where the electron intensity gradient contributes to the dynamic generation from local anisotropy variation near spin reorientation transition (SRT) is reported. Encouragingly, by utilizing the dynamic shift of the SRT domain interface, the straight movement is actualized with the skyrmion bubble slave to the SRT domain interface forming an elastic composite object, avoiding the usual deflection from the skyrmion Hall effect. The critical contribution of the SRT domain interface via conveniently electron-assisted heating is further theoretically validated in micromagnetic simulation, highlighting the compatible application possibility in advanced devices.

4.
J Phys Condens Matter ; 36(15)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38171019

RESUMO

The cluster magnet Nb3Cl8consists of Nb3trimmers that form an emergentS= 1/2 two-dimensional triangular layers, which are bonded by weak van der Waals interactions. Recent studies show that its room-temperature electronic state can be well described as a single-band Mott insulator. However, the magnetic ground state is non-magnetic due to a structural transition below about 100 K. Here we show that there exists a thickness threshold below which the structural transition will not happen. For a bulk crystal, a small fraction of the sample maintains the high-temperature structure at low temperatures and such remnant gives rise to linear-temperature dependence of the specific heat at very low temperatures. This is further confirmed by the measurements on ground powder sample orc-axis pressed single crystals, which prohibits the formation of the non-magnetic state. Moreover, the intrinsic magnetic susceptibility also tends to be constant with decreasing temperature. Our results suggest that Nb3Cl8with the high-temperature structure may host a quantum-spin-liquid ground state with spinon Fermi surfaces, which can be achieved by making the thickness of a sample smaller than a certain threshold.

5.
Nanoscale ; 16(3): 1406-1414, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165953

RESUMO

Itinerant ferromagnetism at room temperature is a key factor for spin transport and manipulation. Here, we report the realization of near-room temperature itinerant ferromagnetism in Co doped Fe5GeTe2 thin flakes. The ferromagnetic transition temperature TC (∼323 K-337 K) is almost unchanged when the thickness is as low as 12 nm and is still about 284 K at 2 nm (bilayer thickness). Theoretical calculations further indicate that the ferromagnetism persists in monolayer Fe4CoGeTe2. In addition to the robust ferromagnetism down to the ultrathin limit, Fe4CoGeTe2 exhibits an unusual temperature- and thickness-dependent intrinsic anomalous Hall effect. We propose that it could be ascribed to the dependence of the band structure on thickness that changes the Berry curvature near the Fermi energy level subtly. The near-room temperature ferromagnetism and tunable anomalous Hall effect in atomically thin Fe4CoGeTe2 provide opportunities to understand the exotic transport properties of two-dimensional van der Waals magnetic materials and explore their potential applications in spintronics.

6.
J Phys Condens Matter ; 36(18)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38241749

RESUMO

We report on (resonant) x-ray diffraction experiments on the normal state properties of kagome-lattice superconductors KV3Sb5and RbV3Sb5. We have confirmed previous reports indicating that the charge density wave (CDW) phase is characterized by a doubling of the unit cell in all three crystallographic directions. By monitoring the temperature dependence of Bragg peaks associated with the CDW phase, we ascertained that it develops gradually over several degrees, as opposed to CsV3Sb5, where the CDW peak intensity saturates promptly just below the CDW transition temperature. Analysis of symmetry modes indicates that this behavior arises due to lattice distortions linked to the formation of CDWs. These distortions occur abruptly in CsV3Sb5, while they progress more gradually in RbV3Sb5and KV3Sb5. In contrast, the amplitude of the mode leading to the crystallographic symmetry breaking fromP6/mmmtoFmmmappears to develop more gradually in CsV3Sb5as well. Diffraction measurements close to the V K edge and the Sb L1edge show no sensitivity to inversion- or time-symmetry breaking, which are claimed to be associated with the onset of the CDW phase. The azimuthal angle dependence of the resonant diffraction intensity observed at the Sb L1edge is associated with the difference in the population of unoccupied states and the anisotropy of the electron density of certain Sb ions.

7.
Nano Lett ; 23(24): 11526-11532, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079244

RESUMO

Fe3GaTe2, a recently discovered van der Waals ferromagnet, demonstrates intrinsic ferromagnetism above room temperature, necessitating a comprehensive investigation of the microscopic origins of its high Curie temperature (TC). In this study, we reveal the electronic structure of Fe3GaTe2 in its ferromagnetic ground state using angle-resolved photoemission spectroscopy and density functional theory calculations. Our results establish a consistent correspondence between the measured band structure and theoretical calculations, underscoring the significant contributions of the Heisenberg exchange interaction (Jex) and magnetic anisotropy energy to the development of the high-TC ferromagnetic ordering in Fe3GaTe2. Intriguingly, we observe substantial modifications to these crucial driving factors through doping, which we attribute to alterations in multiple spin-splitting bands near the Fermi level. These findings provide valuable insights into the underlying electronic structure and its correlation with the emergence of high-TC ferromagnetic ordering in Fe3GaTe2.

8.
J Phys Chem Lett ; 14(50): 11529-11535, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091371

RESUMO

In order to understand broadband photodetectors from ultraviolet-visible (UV-vis) to the near-infrared range, one needs to find novel two-dimensional (2D) van der Waals (vdW) materials with broadband optoelectronic performance. Transition metal phosphorus sulfides (TMPSs) have been reported as a new type of vdW material with generally broadband and p-type conductivity. Here, we report a high-performance and broadband photodetector consist of p-type FePS3 and n-type WS2 with a working range of 405-785 nm. The maximum values of responsivity and specific detectivity are 32.5 mA/W and 1.73 × 1012 jones at 405 nm and 2 V bias, which are better than those of its individual constituents and many other 2D vdW heterostructures. The high performance of the FePS3/WS2 photodetector is attributed to the built-in electric field in the FePS3/WS2 p-n heterostructure and type II band alignment. Present study demonstrates that the material family of TMPSs could be a promising platform for broadband photodetector applications.

9.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687484

RESUMO

Superhydrophobic coating ice suppression is an advanced and durable technology that shows great potential for application on pavements. Although many researchers have conducted experimental and theoretical validations to confirm the effectiveness of superhydrophobic surfaces in actively suppressing ice formation, there are still some who remain skeptical. They argue that the roughness of the surface may increase ice adhesion due to the mechanical interlocking effect of condensation droplets in low-temperature and high-humidity environments. In this study, we present a comprehensive investigation of a novel superhydrophobic coating specifically designed for pavement surfaces, aiming to address the question of its active anti-icing/ice-sparing capabilities in a condensing environment. The changes in contact angle before and after condensation for four material surfaces with varying wettability were investigated, as well as the morphology and ice adhesion of liquid water after it freezes on the material surface. The findings reveal that the proposed superhydrophobic coating for pavements effectively prevents condensate droplets from infiltrating the surface structure, resulting in delaying the surface icing time and reducing the attachment strength of the ice.

10.
Nat Commun ; 14(1): 5911, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737236

RESUMO

Realization of highly tunable second-order nonlinear optical responses, e.g., second-harmonic generation and bulk photovoltaic effect, is critical for developing modern optical and optoelectronic devices. Recently, the van der Waals niobium oxide dihalides are discovered to exhibit unusually large second-harmonic generation. However, the physical origin and possible tunability of nonlinear optical responses in these materials remain to be unclear. In this article, we reveal that the large second-harmonic generation in NbOX2 (X = Cl, Br, and I) may be partially contributed by the large band nesting effect in different Brillouin zone. Interestingly, the NbOCl2 can exhibit dramatically different strain-dependent bulk photovoltaic effect under different polarized light, originating from the light-polarization-dependent orbital transitions. Importantly, we achieve a reversible ferroelectric-to-antiferroelectric phase transition in NbOCl2 and a reversible ferroelectric-to-paraelectric phase transition in NbOI2 under a certain region of external pressure, accompanied by the greatly tunable nonlinear optical responses but with different microscopic mechanisms. Our study establishes the interesting external-field tunability of NbOX2 for nonlinear optical device applications.

11.
Nat Commun ; 14(1): 5259, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644000

RESUMO

Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.

12.
Nat Commun ; 14(1): 5230, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37634043

RESUMO

Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.

13.
Natl Sci Rev ; 10(5): nwad034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37260928

RESUMO

Since the discovery of superconductivity in MgB2 (Tc ∼ 39 K), the search for superconductivity in related materials with similar structures or ingredients has never stopped. Although about 100 binary borides have been explored, only a few of them show superconductivity with relatively low Tc. In this work, we report the discovery of superconductivity up to 32 K, which is the highest Tc in transition-metal borides, in MoB2 under pressure. The Tc of MoB2 in the α phase can be well explained by theoretical calculations in the framework of electron-phonon coupling. Furthermore, the coupling between the d electrons of Mo and the out-of-plane Mo-phonon modes are the main driving force of the 32 K superconductivity of MoB2. Our study sheds light on the exploration of high-Tc superconductors in transition metal borides.

14.
Nat Commun ; 14(1): 2492, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120572

RESUMO

The recently discovered kagome metals AV3Sb5 (A = Cs, Rb, K) exhibit a variety of intriguing phenomena, such as a charge density wave (CDW) with time-reversal symmetry breaking and possible unconventional superconductivity. Here, we report a rare non-monotonic evolution of the CDW temperature (TCDW) with the reduction of flake thickness approaching the atomic limit, and the superconducting transition temperature (Tc) features an inverse variation with TCDW. TCDW initially decreases to a minimum value of 72 K at 27 layers and then increases abruptly, reaching a record-high value of 120 K at 5 layers. Raman scattering measurements reveal a weakened electron-phonon coupling with the reduction of sample thickness, suggesting that a crossover from electron-phonon coupling to dominantly electronic interactions could account for the non-monotonic thickness dependence of TCDW. Our work demonstrates the novel effects of dimension reduction and carrier doping on quantum states in thin flakes and provides crucial insights into the complex mechanism of the CDW order in the family of AV3Sb5 kagome metals.

15.
Adv Mater ; 35(20): e2211164, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856016

RESUMO

The study of topology in quantum materials has fundamentally advanced the understanding in condensed matter physics and potential applications in next-generation quantum information technology. Recently, the discovery of a topological Chern phase in the spin-orbit-coupled Kagome lattice TbMn6 Sn6 has attracted considerable interest. Whereas these phenomena highlight the contribution of momentum space Berry curvature and Chern gap on the electronic transport properties, less is known about the intrinsic real space magnetic texture, which is crucial for understanding the electronic properties and further exploring the unique quantum behavior. Here, the stabilization of topological magnetic skyrmions in TbMn6 Sn6 using Lorentz transmission electron microscopy near room temperature, where the spins experience full spin reorientation transition between the a- and c-axes, is directly observed. An effective spin Hamiltonian based on the Ginzburg-Landau theory is constructed and micromagnetic simulation is performed to clarify the critical role of Ruderman-Kittel-Kasuya-Yosida interaction on the stabilization of skyrmion lattice. These results not only uncover nontrivial spin topological texture in TbMn6 Sn6 , but also provide a solid basis to study its interplay with electronic topology.

16.
Nat Commun ; 14(1): 581, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737608

RESUMO

The mysterious Planckian metal state, showing perfect T-linear resistivity associated with universal scattering rate, 1/τ = αkBT/ℏ with α ~ 1, has been observed in the normal state of various strongly correlated superconductors close to a quantum critical point. However, its microscopic origin and link to quantum criticality remains an outstanding open problem. Here, we observe quantum-critical T/B-scaling of the Planckian metal state in resistivity and heat capacity of heavy-electron superconductor Ce1-xNdxCoIn5 in magnetic fields near the edge of antiferromagnetism at the critical doping xc ~ 0.03. We present clear experimental evidences of Kondo hybridization being quantum critical at xc. We provide a generic microscopic mechanism to qualitatively account for this quantum critical Planckian state within the quasi-two dimensional Kondo-Heisenberg lattice model near Kondo breakdown transition. We find α is a non-universal constant and depends inversely on the square of Kondo hybridization strength.

17.
Sci Bull (Beijing) ; 68(2): 165-172, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36653217

RESUMO

Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron-electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron-electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.

18.
Nat Mater ; 22(1): 50-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396963

RESUMO

Layered α-RuCl3 is a promising material to potentially realize the long-sought Kitaev quantum spin liquid with fractionalized excitations. While evidence of this state has been reported under a modest in-plane magnetic field, such behaviour is largely inconsistent with theoretical expectations of spin liquid phases emerging only in out-of-plane fields. These predicted field-induced states have been largely out of reach due to the strong easy-plane anisotropy of bulk crystals, however. We use a combination of tunnelling spectroscopy, magnetotransport, electron diffraction and ab initio calculations to study the layer-dependent magnons, magnetic anisotropy, structure and exchange coupling in atomically thin samples. Due to picoscale distortions, the sign of the average off-diagonal exchange changes in monolayer α-RuCl3, leading to a reversal of spin anisotropy to easy-axis anisotropy, while the Kitaev interaction is concomitantly enhanced. Our work opens the door to the possible exploration of Kitaev physics in the true two-dimensional limit.


Assuntos
Elétrons , Campos Magnéticos , Anisotropia
19.
NPJ Quantum Mater ; 8(1): 20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666243

RESUMO

Topological semimetals such as Dirac, Weyl or nodal line semimetals are widely studied for their peculiar properties including high Fermi velocities, small effective masses and high magnetoresistance. When the Dirac cone is tilted, exotic phenomena could emerge whereas materials hosting such states are promising for photonics and plasmonics applications. Here we present evidence that SrAgBi is a spin-orbit coupling-induced type-II three-dimensional Dirac semimetal featuring tilted Dirac cone at the Fermi energy. Near charge compensation and Fermi surface characteristics are not much perturbed by 7% of vacancy defects on the Ag atomic site, suggesting that SrAgBi could be a material of interest for observation of robust optical and spintronic topological quantum phenomena.

20.
Nat Commun ; 13(1): 7348, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522317

RESUMO

Van der Waals (vdW) magnet heterostructures have emerged as new platforms to explore exotic magnetic orders and quantum phenomena. Here, we study heterostructures of layered antiferromagnets, CrI3 and CrCl3, with perpendicular and in-plane magnetic anisotropy, respectively. Using magneto-optical Kerr effect microscopy, we demonstrate out-of-plane magnetic order in the CrCl3 layer proximal to CrI3, with ferromagnetic interfacial coupling between the two. Such an interlayer exchange field leads to higher critical temperature than that of either CrI3 or CrCl3 alone. We further demonstrate significant electric-field control of the coercivity, attributed to the naturally broken structural inversion symmetry of the heterostructure allowing unprecedented direct coupling between electric field and interfacial magnetism. These findings illustrate the opportunity to explore exotic magnetic phases and engineer spintronic devices in vdW heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...